

			000000000000000000000000000000000000000	00000
Φ				
	AT TH			
	釆环			
	旧古公			
	用甲仮			
	電記級加吉	л		
	电 肌 饭 2 下 词	ス		
	雪柏拉松			
	电你按亚			
	タエ船チナ	t.		
	今人肬七1	2		
	•••••			

Polarity deci	sion			
PO	SITIVE			
1 2 3 4 5 6 7 7 8 9 10 11 11 12 13 14	Air Human skin Glass Mica Human hair Nylon Wool Fur Lead Silk Aluminium Paper Cotton Wood	16 17 18 19 20 21 22 23 24 25 26 27 28 29 29	Hard rubber Epoxy, glass Nickel, copper Brass, silver Gold, platinum Polystyrene foam Acrylic Polyester Celluloid Polyurethane foam Polyethelene Polypropelene PVC (vinyl) Silicon	
L 13	Steel	30		
	Table 1: An exa	ample trib	poelectric series	

Table 2 snows typical electrostatic voltages produc	eu m both high and lov Electrostatic 10 - 20 % Relative humidity	potential (V) 65 - 90 % Relative humidity
Walking across a carpet Walking on a vinyl floor Picking up a polythene bag Getting up from a polyurethane foam chair	35,000 12,000 20,000 18,000	1,500 250 1,200 1,500
Table 2: Electrostatic	voltages and humidit	y

	down electric field strength in einic of order 201///em and
The brea	kdown electric neid strength in all is of order 30kv/cm, and
Human b	ody can be charged to about 25KV
The ungr	ounded metal can rise in potential to the potential of the charged bo
So, d _{min} :	= 25kV / (30kV/cm) ~ 1cm
If the m Ground	etal part is grounded, the voltage across the inductance of the Green due to the ESD discharge current is about 1500V
So , d _{min}	= 1500V / (30kV/cm) ~ 1mm

Air	Discharge v.s. Contact Discharge
The a	ir discharge test method uses the air as the discharge path to the EUT fo
The E	SD pulse.
The part (contact discharge directly injects the ESD pulse through the conductive of the EUT.
The a	ir discharge test method most closely simulates a human body ESD even
but it	is not a repeat able methodology.
Why	? Since the rise time of the discharge pulse is dependent on the approach
spee	d of the ESD simulator toward the EUT, the speed of approach plays a vi
Role	in the ESD testing.
The coccur	contact discharge test method does not recreate the ESD event as it natures in life. The reason for using contact discharge is the reproducibility of the red

AIr DI	scharge Mechanism
The air	discharge event can be characterized in terms of the following
Conditi	ons (or mechanism):
1.	Static Electric Field
2.	Corona Predischarge
3.	Dynamic Electric Field
4.	Magnetic Field
5.	Current Injection
Prior to th	e ESD event, the stored charge held by the human body results in
a potentia Touched	l difference between the human body and the equipment to be
rouched.	
At relative ionized cre	ly high voltage level, the air in the immediate vicinity of the ESD event eating a corona predischrage.
As the dis	charge occurs, the field collapses resulting a dynamic electric field.
The assoc	ated transfer of charge between the human body and the EUT establishes c field.

SD Multiple Air Discharge
At a particular distance between the finger and an object, the stored energies sufficient for a spark to propagate.
The arc will disappear when the energy required to maintain the air ionizat path is not enough.
As the finger moves closer to the object, the energy required to initiate the Spark is reduced and the spark again propagates.
The discharge continues until the stored charge is completely exhausted.
Subsequent pulses can be separated by a time period ranging from 10 us To 200 ms.

_			TA	BLE C		
Conce	ARISON C	¢6CHZMa %	asurismed De Contra	TS WITH A NSI CT DEICHARGE	AND THC &	A CHICATIONS
ş	- " "	47255 (6.]	j. S		O'CHA N	ARACTOR OF
Voltage	녌	Riscinc (ni)	1 ma	Risstine (rs)	۶Ľ	Risetinen (135)
2	12	<0.4	7.5	0.7 - LO	13.4 1	0.117
	24	< 9.4	15	Q.7- L.O	63.96	0.117
0	36	< 0.4	22.5	0.7-1.0	100.74	0.107
2	48	<24	30	Q.7 1.0	133.66	0.117

