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Inductance  Calculations  in  a  Complex  Integrated 
Circuit  Environment 

Abstract: This  paper  describes a method for  calculating  multiloop  inductances  formed by complicated  interconnection  conductors. 
Knowledge of these  inductances  leads  to  useful  information  concerning  the  design of such systems. In the  approach  pursued  here,  the 
conductor  loops  are  divided  into  segments  for  which  so-called  partial  inductances  are  calculated.  The  partial  inductances  are then appro- 
priately  added  to  yield  the  desired loop inductance. 

1. introduction 
Historically,  inductance calculations have been  used 
primarily in power engineering  applications.  While  little 
attention is given in most field theory  texts  to  inductance 
calculations for electronic  circuit geometries of practical 
importance,  Grover [ 1 ] provides a more  extensive  treat- 
ment of this  subject.  Additionally, Grover supplies a 
thorough  list of references. 

In  the  last  decade, integrated  circuit  technology has 
opened new areas of application for  inductance calcula- 
tions. Previously,  the role of inductance in electronic 
circuits and digital systems was  mostly limited to dis- 
crete  components.  The coupling among these com- 
ponents could  be  ignored. In  the microcircuit  environ- 
ment,  however, complicated  multiconductor structures 
serve  as  interconnections.  The electrical characterization 
of such  structures is doubly important  since coupled 
voltages, signal delays  and signal distortion all degrade 
system performance.  Analysis of the electrical properties 
of multiconductor systems is also fundamental to  system 
synthesis  and optimization. 

The  present  paper is devoted  to  the evaluation of 
inductances  for  arbitrary microcircuit  geometries. This 
usually constitutes a first step in the analysis of inter- 
connection  systems. 

A new comprehensive  theory of inductance is offered, 
which is called the  theory of partial inductance  since  the 
calculations are based on  the  inductance of loop  segments. 
This formulation  establishes  a  relationship between 

470 incomplete  loops and closed  loops  and thus  accommo- 

dates Weber’s caveat:  “It is important  to  observe  that 
inductance of a piece of wire not forming a closed  loop 
has  no meaning” [ 21. Further,  the  theory  presented  here 
is fundamental to a complete analysis  via  partial-element 
equivalent  circuits [3]. All important  aspects of modern 
inductance calculations in integrated  circuit systems  are 
discussed.  Special attention is given to  systems without 
a  local  ground  plane since  the usual  two-dimensional 
calculations become invalid for this case.  New formula- 
tions  are given that  are suitable for implementation on a 
digital computer. (As a  practical consideration,  computer 
analysis is the only way to qualitatively characterize 
these minute structures  because of their complexity.) 
The size of the  structures  to be  considered is small com- 
pared  to  the wavelength of the highest frequency in- 
volved, and  the  overall dimensions are typically  less than 
three  centimeters.  The  conductors,  for  example, can 
be lines on a planar surface  or small conductor pins. This 
makes a quasi-static  analysis  feasible  up to relatively 
high frequencies,  as will be shown in Section 3. 

The  conductors to be analyzed  can include both con- 
nections within the integrated circuits  on  the chip and 
interconnections to the chip. The “on-chip’’ inductances 
are generally so negligible that  their  reactances  can  be 
ignored. (This  assumption  can be substantiated in each 
particular  case by the  techniques developed here.) As a 
further application for this work,  the analysis and design 
of lumped-element  microwave circuits is mentioned, e.g. 
[4]. The  approach  pursued  here is related to a computer 
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approach  for  the calculation of magnetic fields [ 5 ]  in 
that segmenting of the  currents is used in both  cases. 

Inductances in a multiloop environment  are  the subject 
of the next  section in this report, while the  frequency, 
where  current spreading  (nonuniform current distribu- 
tion) becomes  important, is assessed in Section 3. Con- 
cepts and definitions of partial inductances  are considered 
in Section 4, while Sections 5 and 6 are  devoted  to  the 
actual  evaluation of partial inductances. Sections 7 and 
8 discuss  the application of the  theory of partial induc- 
tances  to complicated  two-  and  three-dimensional struc- 
tures. 

2. Inductances of complex geometries 
In this section,  inductances  are considered for a  general 
N-loop  system,  shown in Fig. l(a), which is representa- 
tive of the  conductor  arrangements of interest.  It is rather 
theoretical,  however, and serves primarily in the develop- 
ment of the method and not as a  sample  application. To  
start with, all loops are assumed to be  completely  closed 
except  for  an infinitesimal gap between the  connection 
terminals. The  inductances of interest here are  those 
formed by the  connections, unlike the usual case in which 
inductances  consist of lumped elements and connections 
are not significant. The  inductances  for  such  an  N-loop 
system  are given by the definition below. 

Dej?nition of inductance 
A set of N2 inductances is defined for a system of N 
loops as 

L, = - for I, = 0 if k # j  , +ij  

' j  

(1) 

where +ci represents  the magnetic flux  in loop i due  to a 
current lj in loop j .  

The  inductance can  be  related to  the geometry by the 
magnetic vector potential  A defined by B = V X A.  The  
vector potential generated by a current l j  in loop j is 

where rij = Irj - rjl and d l j  is an element of conductor 
j with the direction along the  axis of the  conductor.  The 
area aj is the  conductor  cross  section perpendicular to 
the  current flow. A uniform current density is assumed  to 
exist in conductorj which is  of a constant  cross section 
aj along the loop. The  average magnetic flux +ij in loop i 
is easily  related to  the vector  potential A, as 

where ai represents  the  constant  cross sectional area of 
conductor i. The  inductance  for  the loops i and j can be 
found by inserting Eqs. ( 2 )  and (3) into  Eq. (1) :  
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Figure 1 (a) System of coupled  conductor  loops. (b) Equiva- 
lent  circuit for the  above  geometry. 

This result can  also be derived from  energy concepts, 
but this  formulation shows  that  averages  are  taken  over 
the  conductor  cross  sections  for both the  vector  poten- 
tial, Eq. ( 2 ) ,  and  the flux, Eq. (3). The  Neumann formula, 
which is a special case  for  the  inductance of thin filamen- 
tary circuits i and j ,  is given by 

The  letter f  indicates that  current filaments are consid- 
ered.  Equation (4) can  be written in a  simple  form  with 
Eq. ( 5 )  as 

The idea of the  averages is apparent in Eq. (6). For 
most  geometries, closed  form  solutions for  the multiple 
integrals are hard to find or  are unduly  complicated. How- 
ever,  the  approximation  methods  presented below result 471 
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Figure 2 Pulse  spectra  for  different pulse durations T .  

in efficient calculations. An equivalent  circuit for  the  con- 
figuration of Fig. l(a) is shown in Fig. l(b).  An N X N 
inductance matrix is formed  for  the  system  as L = [L,]  
where  the  elements  are,  at  least in principle, evaluated 
from  Eq. (6). The off-diagonal terms of the L matrix are 
called mutual inductances, while the diagonal terms  are 
called self inductances.  The flux-current  relation for  the 
general system of Fig. 1 is 

J r = L I .  (7) 

The element $i of the flux vector +!I represents  the  total 
flux through the ith loop generated by all N currents.  In 
relation to  network analysis, it is desirable  to obtain  volt- 
age-current relations. Since  the voltage is  related  to  the 
flux by vi = $i it is found in the s-domain that 

V ( s )  = sLI(s) . (8) 

It is assumed  here  that  the  current in all conductors 
(wires) is uniform or, equivalently, that  current crowding 
effects are small. The  next  section  describes a method  for 
determining the  frequency  at which current crowding 
sets in. 

3. Estimation of frequency dependence 
At first, it  seems  that  Eq. (6) is limited in usefulness  by 
the  current redistribution due  to  eddy  currents  at high 
frequencies.  However,  as  shown by the  example in Sec- 
tion 7, the  change in inductance values is small except 
in extreme  situations  where  the  conductors  are  placed 
in close proximity. Further,  the length of a bend in a  wire 
conductor is usually  small compared with the  conductor 
length. Thus,  the  current distribution and redistribution 
with frequency in the  corner regions is insignificant for 
practical  calculations and  convenient  approximations 
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For usual  geometries, it is impossible to  obtain  an ac- 
curate  estimate of the  frequency  at which current  crowd- 
ing due  to  eddy  currents  becomes  important.  However, 
approximate  answers  can  be found  from the usual skin- 
effect calculations [6]. Moderate crowding is expected 
in conductors with the larger cross syction  dimension 
d equal  to  the  skin  depth 8 = ( I/rfBpu)7 , where u is the 
conductivity of the  conductors.  As  an  example, if the 
largest cross  section d in  a system is 0.2mm, then  the 
corresponding frequency fs is about 0.1 MHz for  copper 
conductors. 

Next, a relation is established between  the  frequency 
and time  domain representations  for digital system appli- 
cations. The amplitude spectrum of the  trapezoidal pulse 
shown in Fig. 2 is found from the  Fourier integral to be 

where T is the  pulse  duration  and t ,  the rise time,  and 
sincx = sin (.irx)/(.irx). The plot of the normalized ampli- 
tude  spectrum (A(f ) I  in Fig.  2 covers a large range of 
pulse durations T .  The pulse duration is variable in a 
digital system. The  curves  are easily  applied to values of 
t ,  other than 1 ns.  If the new  rise  time is x ns  then  the new 
spectrum is found by dividing the  frequency  scale by x. 
The  frequency fR to  be used in the estimation of the skin 
distance is found by computation of an equivalent  band- 
width 

f B = f  lsinc(ft,)sincf(T + t,)(df. 
0 

The equivalent  bandwidth  calculations  indicated  in  Fig.  2 
are obtained from  Eq. (1 0). The  same scaling procedures 
also  apply  to  the bandwidth  calculations. The  frequency 
f B  is then 8.9 MHz for a pulse of 100-ns duration with a 
10-ns  rise time. The skin depth  is, in this case, of the  or- 
der of 20 pm  for  copper, a distance smaller than  the  cross 
section  for  most  systems. 

However,  for a conductor  spaced  at a distance larger 
than  both  thickness  and width, the  inductance will be 
only a weak  function of frequency.  This  is  substantiated 
by  considering Eq. (6), where Lf, .  is weighted  by the 
nonuniform current distribution. 'But for  conductors 
spaced sufficiently apart, L is nearly constant  over  the 
cross  section  and  thus L, will be insensitive to  the cur- 
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rent redistribution. The  inductance matrices  given in 
Section 7 serve  as examples for  the variation of induc- 
tance with respect  to  frequency and conductor spacing. 

4. Concepts of partial  inductance 
This  section  describes a theory of partial inductance  that 
related  to  modern  network analysis  and is suited for com- 
puter implementation. This  represents a further develop- 
ment of the  concepts  presented in [ 1 ]. 
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The definition of inductance  for a particular  set of loops 
is given by Eq. (1).  The flux qij is induced in a  closed 
loop where  the  area is bounded by the loop. It  seems, 
therefore,  that  no unique flux is associated with an  open 
loop or a segment of wire. It is also  obvious  that loopj  
cannot  support a current unless the loop is closed in some 
way. Nevertheless,  unique inductances are  obtained  for 
incomplete  loops as is shown below. Relations for  the 
inductance  between  parts of circuits  can  be  developed, 
starting with Eq. (4). For this purpose,  the integrations 
over  the lengths are rewritten as summations over  the 
straight  loop  segments (which may  be infinite in number 
for  curved  conductors) and all segments are allowed to 
have a different cross  section,  or 

Here,  the ith loop is assumed to  consist of K segments 
while the  jth loop is divided  into M segments. The limits 
in the integrals are  the starting  points 6, , b ,  and  the end 
points c, and c,  of the segments. 

Definition of partial  inductance 
Partial inductances  are defined in general as  the argu- 
ment of the  double summation in Eq. ( 1   1 )  for  the con- 
ductor segments as 

Partial inductances  are named L p , ,  in order  to distin- 
guish them from the loop inductakes L,. (Balabanian 
and  Bickart [7] define the  inductance  submatrix of the 
branch impedance  matrix as L, matrix.) 

Sign rule for  partial  inductances 
The sign of L ,  is accounted  for by a factor S,, given 
in Eq. ( 1  3) bed;. The  choice of the segments into which 
a circuit is divided is not  unique. The lines dividing the 
conductor loops into  parts (for which the partial  induc- 
tances  are  to be  calculated) are called inductive parti- 
tions. There usually exists a set of partitions that is op- 
timal for analysis in each particular case.  Then,  Eq. ( 1  1) 
is written in general as 

X U 

L,  = 2 2 SkrnLPkrn 
k = l  m=1 

S,, represents  the sign (k1) associated  with the particu- 
lar partial  inductance. The partial inductances Lpkm are 
positive semidefinite by definition. The sign S,, has been 
removed from  the purely geometry-dependent partial 
inductances,  since S,, depends  on  the direction of cur- 
rent flow in the  conductors. 

The evaluation of the sign S,, is discussed  next.  The 
case of a multiloop situation must  be  considered  for gen- 

Figure 3 Area associated with two conductor segments. 

erality. An a priori  assignment of terminal  voltages  and 
current directions is convenient  for generalized  calcula- 
tions. The terminal  voltages are always  assigned in such 
a way that  the  current flows from  the positive  terminal 
to  the negative  terminal. A current  vector is assigned to 
all branches of the loop in the direction of current flow. 
Then,  the sign S, of the partial inductance L,, ,  is deter- 
mined by the sign of the  scalar  product betwe& the cur- 
rent  vectors i andj.  L,,, is zero  for  the special case when 
the  scalar  product is'identically zero  for orthogonal 
currents. If the flux due  to  the  currents assigned to any 
pair of loops is in the  same direction  (additive fields), then 
the coupled  voltage is positive. 

Flux area  of  partial  inductance 
It is vital for  an understanding of the  concept of partial 
inductances  to  establish  the relation to  the flux area  as- 
sociated with  partial inductances.  The  case of two 
straight,  not necessarily coplanar, segments  (shown in 
Fig. 3)  is considered first. 

Theorem: 
Given a thin straight conductor segment k between  the 
points b, and c,  , and  given a second  conductor segment 
between b ,  and c, , then 

where a,, is  the  area bounded at  the  ends by the  conduc- 
tor segment k and infinity, and on  the sides  by two straight 
lines  which go  through  the  points b, and c, and  the nor- 
mal to  the line  connecting the points b ,  and c, as  shown 
in Fig. 3. Then, alternatively: 

The proof is based on  Stokes'  theorem, which relates 
the  surface integral over a,, to a line integral over I,. The 
vector potential is given by 473 
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Figure 4 (a) A closed loop with a tilted sigment. (b) Flux  area 
associated with Loll, LPZL, Lp44 and LPyq. 

which is similar to  Eq. (2), and  therefore 

It must then be shown  that  the  path I ,  can  be  restricted 
to  the portion from b, to C, . A,, is zero at infinity, which 
implies that  no  contribution  results  from this  portion of 
the loop. On  the  two  paths  perpendicular  to  the  conduc- 
tor rn, A,, is in the direction of I, and  therefore normal 
to dl,, and  thus  the  contribution  to  the integral is again 
zero.  The integration over  the loop 1, reduces,  therefore, 
to integration over  the  path  from b, to c, , as  was  to be 
shown. 

The significance of the flux through the closed loop of 
Fig. 4(a) in relation to  the flux associated with the partial 
inductances is brought  out in the  example below. Seg- 
ment 1 in Fig. 4(a) is assumed  to  be tilted for generality. 
Equation (13) gives the total  loop inductance in terms of 
partial inductances, which for this case is 

4 4  

Each of the partial inductances  has a flux area asso- 
ciated  with it in accordance with the  above  theorem. 
Specifically, the  areas  associated with conductors 2 and 
4 are  considered.  The tilted conductor segment 1 in Fig. 
4(a) introduces  an additional  complication since this por- 
tion must be approximated by an infinite number of 
minute steps.  In this example, only  a finite single step 
is shown  for clarity. The flux area  associated with the 
partial  self-inductance LpP1 extends  from  somewhere 
near  the  conductor  to infinity, since  the partial self- 
inductance given by Eq. (12) is the  average mutual in- 
ductance  over  the  cross section of the  conductor.  The 
sign rule  leads to a negative  mutual inductance LPz4 and 
the corresponding flux area  extends from conductor 4 
to infinity. Therefore,  the flux areas  cancel  outside of 

474 conductor 4  and the only remaining flux area is restricted 

to  the inside of the  loop,  as is expected.  The  same prin- 
ciple  can  be  applied to  conductor 1 ,  where 1" cancels  the 
flux area  outside  instead of conductor  4. If this concept 
is applied to all partial inductances in Eq. (14), it is found 
that  the only remaining flux area is restricted to  the inside 
of the  loop. 

If nonplanar loops  are  considered, canceling  pairs of 
currents can  be introduced which reduce  the general 
problem to a  new set of locally planar  loops. This is ana- 
logous to  the usual proof of Stokes'  theorem in terms of 
internal currents. 

The  last  topic  to be discussed in this  section is incom- 
plete  loops. For  example,  the  loops in Fig. 1 are all open 
at  the connections.  A difficult problem occurs if the length 
of the  space  between  connection terminals is comparable 
to  the dimensions of the loop, and this is actually  quite 
common in integrated  circuits. Often,  the  external con- 
nections  are  not specified, or  are  subject  to variation 
among different applications. It is nevertheless desirable 
to  characterize  the  inductance of such  open loops. 

Two definitions are  introduced  at this point. Fortunate- 
ly, the  concepts of partial inductance lead to a value  for 
the  inductance  even if the  loops  are  open. 

Dejinition of open loop inductance 
Open loop inductance is defined as  the  inductance of an 
incomplete  loop computed in accordance with the con- 
cepts of partial inductance. 

It is apparent  from  the  above  development  that  the 
open loop inductance is the closed loop  inductance with 
the partial inductances of the closing path  removed. Thus, 
as  an  alternate  solution,  the  inductance of an open loop 
can  be calculated by defining a reasonable closing path. 
Then,  however,  the closing path  must  be  completely 
specified. This  approach  leads  to values of inductance 
appropriate  to specific cases,  but  the  open  loop induc- 
tance  appears  to be an  easier general way to specify in- 
ductance. 

Another definition is helpful for  the situation where  the 
terminals are  close  together  compared  to  the loop size. 

Dejinition of inductance for a quasi-closed  loop 
The  inductance of a  quasi-closed  loop is obtained by 
simply ignoring the partial inductance  between  the ter- 
minals. 

Unfortunately, if a  loop is quasi-closed, it does not 
mean  that  the loop is decoupled from  the  connections to 
the loop. The only  situation for which conductors  are 
locally decoupled is that in which  they are perpendicular 
to each  other. 

5. Evaluation of partial self-inductances 
Partial  self-inductances are  evaluated  from  the definition 
of partial inductance,  Eq. (12), where integration i and 
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integration j are  both  over  the  same  conductor, or 

Partial  self-inductance is the only case  for which the 
integrand is singular due  to integration over  the  same 
volume. The most important  geometry of interest is a 
rectangular conductor, which is shown in Fig. 5. The 
solution of the six-fold integration is in general obtained 
by introducing  new  variables uy of the form uy = y - y' , 
where y = x ,  y , z . Use was made  here of a closed  form 
answer given in [8]. From this,  a new formulation is 
developed  suitable for  fast digital computations.  Further, 
the  accuracy of this  formulation for long thin conductors 
is substantially  improved. The following normalizations 
are  introduced: u = I/W and w = TIW . The partial in- 
ductance is then 

L P . .  2P 6J2 1 + A ,  ?=, [x [In (7) - A , ]  

1 +- 
24uw 

+- ;i [ In (" - 3 - A , ]  + & (0 -A ' )  

2 
0 

[In (0 + A , )  - 4 1  + 6ou ( A ,  - A 3 )  

0 

I 1 +- ( A , - A , )   tan" U U2 

20u 4 6w 
I 

11 w + - A ,  - - tan" (5) + 4 7 - 1 tan-' 
4 0  6 

+ 7 [In ( u  + A , )  - A , ]  + 7 ( A ,  - A , )  1 U 

240 200 

1 
+T ( 1  - A 2 )  +y @ , - A , )  

+ ( 4   - 4 )  

1 
60w u 60uw 

U 

u3 1 + A  + - [In (,I) - A,]  
240' 

( 1 5 )  

where 

A ,  = ( 1  + u"4; 

A ,  = (w' + u')t; 
A ,  = (1  + w2 + u"4 ; 

A ,  = (1 + w')$ ; 
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Figure 5 Partial self-inductance L,,,, for rectangular conductors. 
*I 

w + A  
A ,  = In (y) ; and 

A ,  = In (T) u + A ,  

The evaluation of Eq. (15) should  be  performed by 
summing from beginning to  end,  where  the new terms  are 
added  to  the sum of the  previous terms. The  results, 
shown in Fig. 5, were  obtained on an IBM System/360 
computer in double precision. Since  the  errors  become 
large for  very large  values of u and for small values of 
w, a second formulation is given for infinitely thin con- 
ductors  that is applicable with a small error f o r o  5 0.01 . 
The  formulation, based on  the  assumption  that w = 0 ,  
e.g. [8], is 

The normalizations are  the  same  as in Eq. (15). The 
dotted line in Fig. 5 shows  the evaluation of Eq. (16). 
Simplified formulas  are available for many other situa- 
tions. For  example,  the  inductance of a round  wire of 
length I and  diameter W given by Lp, . / l  = ( p / 2 ~ )  [ln(4u) 
- 1 ] approximates Eq. (1  5) for u > YO and w = 1 . 

Next, a  formulation for partial  self-inductance for con- 
ductors of an  arbitrary  cross section is developed to 
extend  the usefulness of the  theory.  Use is made of the 
above result for rectangular conductors. 

Theorem  for  conductors of arbitrary  cross section 
Given a straight conductor k of length 1 with an  arbitrary 
cross  section,  let  the  conductor  cross  section  be approxi- 475 
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Figure 6 Partitioning of areas a ,  and uk. 

mated by a set of subconductors  each having  rectangular 
cross  section;  then  the partial  self-inductance is given  by 

r N-1 N N 1 - 1  

L,  = 12 2 x cof L,,, + x cof L,,,] det L,,  (17) 
kk i = l   j d + l  ‘3 i-1 

where cof indicates the  cofactor of the element  in the 
matrix and  det is the  determinant. 

The proof is based  on  the definition of inductance 

since  the voltage drop along the  subconductors is related 
to the  current  vector by V = sL,I and  since all voltages 
along the  conductors  are  equal  to V i  = V .  Use is made 
also of the  symmetry of the matrix of “partial sub- 
inductances.” This  symmetry  is  evident  from  Eq.  (12). 

Thus, self-inductances for  arbitrary  conductor  cross 
sections  can  be calculated  with the aid of Eqs. (1 5 )  and 
(17). 

6. Computation of partial mutual inductances 
A multitude of geometries must  be  considered  for  the 
computation of partial  mutual inductances  because of 
the many  possible  relative conductor locations. A useful 
collection of closed form  answers  for  rectangular con- 
ductors is given in [8]. However, closed form solutions 
for mutual inductances  become  even  more  extensive  than 
Eq. (15)  with a corresponding  increase in errors. Below, 
a new filament approximation is developed which is 
convenient for  computer implementation. (Filament 
approximations used in the  past  were mostly developed 
to facilitate  hand  calculations.) Further, a scheme is de- 
veloped by which the  accuracy of the solution can  be 
found. The line  integrals  inside the  area integrations  in 

476 Eq.  (12)  are defined as 

in accordance with Eq. (5) .  LPf,, can  be viewed as  the in- 
ductance  between  any  two  filakents of the  two different 
conductors  for which the mutual inductance is to be cal- 
culated. 

The  conductor  cross  sections uk and am are partitioned 
into a set of rectangles as  shown in Fig. 6, and a  simple 
formulation is obtained when Eq. (12) is rewritten  as 
a sum, 

where K and M correspond  to  conductors k and rn re- 
spectively. 

For a practical  evaluation of Eq.  (19) only a finite num- 
ber of filaments is used. In  fact,  accurate calculations 
can  be obtained  with a small number of filaments, as is 
shown below. Also, a reciprocal  relation exists  between 
accuracy  and  computation time. A closed form solution 
for  the filament inductance, e.g. [ 13, is 

L A = G z  P 4  { (-l) i+l gi log [gi + (g: + r”41 

‘m 

where 

g , =  1 + p ;  

g 2 =  1 + p - u ;  

g3 = p - u ; and 

& = P .  

The normalizations  used are u = -, p = - and 
lk Dz 
‘m l m  

where (xm - x k )  , ( ym - y,) and Dz designate  the  respec- 
tive differences  in the filament coordinates  and 1 ,  and 
Ik are  the lengths of the filaments. The  accuracy of the 
evaluation of Eq.  (19)  for fixed K and M depends  on  the 
relative  position of the  conductors.  Examples  for  the 
two  cases requiring the  largest  number of filaments are 
shown in Figs.  7 and 8. This suggests that  the  number 
of filaments per  conductor  is  chosen  to  be  an  inverse 
function of the  distance  between  conductors.  This  results 
in a considerable reduction in the  necessary  number of 
computations,  since only  a  small number of conductors 
can be  physically close  together in  a  multiconductor 
situation.  Very few  filaments are needed for  accurate 
calculations at  distances  between  the  conductors  that 
are larger than  the  cross  sectional dimensions. In this 
case, partial  mutual inductance is a weak function of the 

A. E. RUEHLI IBM J. RES. DEVELOP. 



10 

Dimensions in millimeters 

'' 4 0.25 k- 

- 1 filament in x direction, 
2 filaments in y direction 

5 filaments in y direction 
"_ 2 filaments in x direction, 

Figure 7 Comparison of approximations for mutual  induc- 
tances. 

conductor  cross  sections. A heuristic algorithm is easily 
developed  for  the selection of an  appropriate  number of 
filaments for  each  geometry. 

Further,  the formulation given above suggests immedi- 
ately  an  extension of the  concepts  to  conductors of any 
cross  section.  The partial  mutual inductance  can be  found 
by  representing a conductor in terms of a set of filaments 
in the direction of current flow. This  assumes, however, 
that  the direction of current flow is known. It  is thus 
noted that this  formulation  includes arbitrary  cross  sec- 
tions  for all conductors,  at  least in an  approximate  sense. 

The remainder of this  section is  devoted to evaluating 
the  accuracy of the filament solution. In  essence,  the for- 
mulations given below are used to  compare  the  accuracy 
of the filament representation,  Eq. (19), with  closed  form 
answers  for  the  worst  case positions  shown in Figs. 7 
and 8. 

To start with, a formulation for conductors  on a  com- 
mon axis is developed,  as is shown in Fig. 7. Then  the 
computation of the mutual inductances is related to  the 
self-inductances as follows: 

Theorem  for  conductors on the same axis 
Given  two  conductors k and m on  the  same axis of 
lengths 1, and l,, with cross  sections identical  but  arbi- 
trary (ak = a, = a ) ,  let the partial  self-inductance of a 
conductor i with cross section a and  length li = lk + 1, 
be called L,., . Then, a) 

11 

if the  two  conductors  are a continuation of each  other, 
and b) 

One filament per  conductor 

2 filaments in x direction, 
5 filaments in y direction 

--- 1 filament in x direction, 
3 filaments in ydirection 

0.1 1 .0 10 100 1001 

1 

Figure 8 Comparison of approximations for mutual  induc- 
tances. 

Figure 9 Equivalent  circuit for two  conductors on same axis. 

'+  I vk "I+ 
vm - 1  

I 

if the  conductors  are  separated by a distance 1 , .  L,  is 
the  inductance of a conductor of length 1, + 1, + I , ,  And 
L,  , L,  refer  to  conductors of length 1, + 1, and 1, + 1, 
respectively. 

A proof is outlined for  the simpler part a) of the 
theorem.  The equivalent  circuit for this case is shown 
in  Fig. 9. The  inductance of a conductor of length 1, + 1, 
is then 

00 99 

The desired  result  follows  immediately since Lpkm = 

Again, the  curves in Fig. 7 can be  obtained  from  this 
theorem  and  Eq. (15). The  curves evaluated  from the 
theorem  coincide with the  answers  for  two filaments 
in the x direction and five filaments in the y direction. 

The  other  case of interest is the  computation of the 
partial inductances  between  conductors with the relative 
locations shown in Fig. 8. 

Lpmk ' 

Theorem  for parallel conductors 
Given  two  rectangular  conductors with cross  sections 
ak and a, of length 1 and with one parallel side touching, 
and L,, ,  the self-inductance of a conductor of cross  sec- 
tion a,';  a,, then, 477 
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(a)   (b)  

Figure 10 (a) A two-dimensional  three  conductor  structure. 
(b) Equivalent  circuit in terms of partial  inductances. 

LPkm = LPii + [LPii2 + LPkkLPrnrn - LPiiWPkk + Lpmm)lf .  

The proof is similar to  the proof for  the partial  self- 
inductance  theorem  for  arbitrary  cross  sections given 
above. 

Again, the  two  theorems  above  are useful  in  determin- 
ing the  appropriate  number of filaments for the repre- 
sentation of partial  mutual inductances.  Numerical cal- 
culations show  that  the filament representation  works 
efficiently for all relative conductor  locations,  except 
the  worst  case position shown in  Fig. 8 where  both 
conductors  are very  thin. For  the  latter  case,  however, 
the  conductors  can  be  approximated  to  be infinitely thin 
and  the  inductance  determined by a different  formula. 
A closed form solution  [8] leads to accurate partial  in- 
ductances  for this  special case, which is mostly of interest 
in the two-dimensional  formulation  given  in the  next 
section. 

7. Inductances of two-dimensional structures 
The  representation of any physical structure by an 
infinitely long  two-dimensional  model is clearly an ap- 
proximation. This is especially true if a large number of 
parallel conductors  are involved, since not all of them  can 
be physically  close (compared with their length) to all 
other  conductors.  The approximation of a set of conduc- 
tors by  a  two-dimensional  model can  be very convenient, 
however,  since  the  inductance matrix  must be specified 
for a unit  length only. 

The formulation  given  below is not a true two-dimen- 
sional representation.  The length will be set  equal  to 
the physical  length of the  actual geometry. This  has 
the  advantage  that  the sensitivity  with respect  to length 
of the  inductance  per unit  length can  be investigated. I t  
is also  noted  that  the  conductors  are  assumed  to  be 
“quasi-closed’’ at  both  ends in the  sense of the defini- 
tion  given above. 

A section of a three-conductor  geometry is shown in 
Fig. 10(a). The partial inductances in the equivalent 
circuit of Fig. 10(b) can be  evaluated  by the formulation 

478 given above.  The matrix of partial inductances must be 

related  to  the  inductance matrix L, which is usually  speci- 
fied for a set of coupled  two-dimensional  transmission 
lines having a  common  ground conductor.  Conductor 3 
in  this example is assumed  to  be  the common  ground  re- 
turn path. The  inductance matrix is  then calculated  from 
the  system of partial inductances divided by the length I ,  

v = SL,I (2 1) 

(22) 

The  inductance matrix L for  the general system with 
a common ground return is found  by  a  generalization of 
the  above example. The general system  consists of N 
conductors with an  inductance matrix of the  order  N- 1 .  
The  common  return  conductor is chosen  to  be  conductor 
k.  Then,  the  elements of the  inductance matrix are 

L, = LPG - LPik - LPkj + LPkk 3 

where 

i , j = 1 , 2 ; . . , N ;  

i , j  # k .  

Very large  ground conductors may present a  problem 
in some  cases.  Judgment  must be  used in selecting an 
effective  ground  width in such a situation. The low- 
frequency  inductances found here  are  an  upper bound 
on  the  inductance  as a function of frequency.  The in- 
ductance matrix is usually  calculated from  the capaci- 
tance matrix [9,10]. This  leads  to  the  inductances at an 
infinite frequency, which is a lower bound on L. Hence, 
the variation of inductance with frequency  can  be 
bounded  from  below  and  above.  An example is given for 
six conductors  located in parallel on a planar surface. 
All conductors  are  assumed  to  be  12.7pm thick and 
50.8pm wide. The  center-to-center spacing is  chosen  to 
be  152.4pm.  Then,  the  inductance matrix corresponding 
to  Eq. (23) is 

15.9 

10.7 15.0 

8.74 9.69 13.9 

7.09 7.48 8.31 12.2 

5.12  5.28 5.51 6.1 9.45 

for  an overall  length of 3.8 1cm. The  elements of the 
matrix are in nH/cm. If the  same  geometry is used,  the 
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inductance matrix  obtained  from the  capacitance 
matrix [ 101 is 

14.7 

10.1 13.8 

8.15  9.06 12.7 

6.54  6.89 7.68 1 1 . 1  

4.65  4.76 5.0  5.51  8.35 i 
For this structure,  the  two  bounds differ by less  than 
ten  percent.  Also, a greater difference is noted in L,, 
for  the  conductor  near  reference  conductor 6, compared 
to  the  conductors  further away. 

As a more general case,  inductances  can  be evaluated 
between loops  formed by the  connection of sets of any 
two  conductors  at  the  far end. If we assume  that  one loop 
consists of conductors i and j and  that a second loop is 
constructed with conductors k and I ,  then  the loop 
inductances  are 

where i , j  , k , I = 1 , 2 ,  . . . , N , and I i  , I ,  are in the  same 
direction. 

Errors may be  introduced in Eqs. (23) and (24) if the 
resultant calculated  mutual inductances  are much  smaller 
than  the partial inductances  on  the right-hand side of 
the equation. 

8. Inductance of three-dimensional  geometries 
All physical systems  are three-dimensional in a strict 
sense. Besides the  class of geometries  considered in 
the  last section  (which  can be  represented by two- 
dimensional  approximations), there  exists a  large  class 
of problems which  must be solved in three dimensions. 
Figure 11 shows two conductors which are considered 
to be of a general  N-loop system.  This  example illus- 
trates  some of the difficulties common to many  physical 
structures  that must be  characterized.  Loop 1 in Fig. 1 1  
forms a quasi-closed  loop  according to  the definition, 
since  the gap is small. Loop 2 is an open loop and,  there- 
fore,  the  open loop inductance can be evaluated for this 
case.  It  seems  appropriate  to  close  the path as indicated 
in Fig. 1 l(a), since a more  realistic value of inductance 
is obtained.  The  cross section of the closing path must 
also be specified to completely characterize  the situa- 
tion. It should  be noted,  however,  that this path is only 
specified in lieu of further information  concerning the 
continuation of the  conductors.  Conceivably,  the entity 
shown in Fig. 1 1  may be wired into different configura- 
tions. 

All inductances of the system  can be evaluated  from 
K M  

(b) 

Figure 11 (a) Two loops of a system and (b) equivalent circuit. 

for  the partitions shown in Fig. 1 1 .  Again,  loop i has K 
partial conductors while loop j consists of M partial 
conductors.  This analysis  is, at least in an  approximate 
sense, applicable to  any interconnection system. A  sim- 
ple  example is given in Fig. 12. Since only a  few con- 
figurations of interest can  be discussed  here, it is general- 
ly noted that  the partial  inductances themselves follow 
the rules of network analysis. Thus, algorithms for 
other configurations can easily be developed. 

9. Measurement of small  inductances 
Most  conventional  inductance bridges fail to give  ac- 
curate readings for  inductances of a value less  than  about 
100 nH.  Errors  are mainly the result of coupling  between 
the instrument and  the unknown inductance. 

Measurements  are possible, however, with  a conven- 
tional  bridge if the unknown  loop is planar  and is placed 
at  such a distance from the instrument (as shown in 
Fig. 13) that coupling is negligible. A  coupling  loop is 
placed perpendicular to  both  the unknown  and the in- 
strument, in such a way that  the perpendicular conductor 
segments are decoupled. Two  measurements  are re- 
quired. For  the first measurement,  the terminals are 
shorted with conductor 4 (shown dashed in Fig. 13). With 
the  assumption  that  the  instrument  can  be  represented 
by a single partial inductance Lp , the  shorted loop 
inductance is 

11 
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Figure 12 Inductance of a rectangular loop. 

Figure 13 Measurement of small inductances. 
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if L, is small due  to  the large distance. 
A second  measurement with the  unknown  loop of an 

inductance L,,,, connected,  and Lp44 removed, leads to 
the  total  inductance 

14 

&"tal = Lsh - L 4 4  + Llow (27) 

if the coupling between L, and  the  unknown is small. 
Then,  the  inductance of the unknown is easily found  as 

11 

Lloop = LTotal- L s h  + LD44 . (28) 

It is noted that Lsh and Lp44 are  independent of the  un- 
known,  and  therefore  an a  priori  calibration is possible. 
Also,  the measured inductance Ll,o, will be the  open 

480 loop inductance according to the definition given above. 

The  measured values of inductances  shown in  Fig. 12 
have been  found  by the  technique described above. 

10. Conclusions 
Inductances in a microcircuit environment  are of interest 
for many reasons.  The major  motivation for this work 
was to develop a means  for determining inductive voltage 
drops  and inductively  coupled  voltages for a large num- 
ber of loops. 

As  stated in the introduction, a theory of inductance 
calculations for small inductance values has  been  de- 
veloped. This  theory  concerns itself with  so-called 
partial inductances, which represent  the  basic building 
blocks into which a system of conductors  can  be arti- 
ficially subdivided to permit inductance calculations for 
complex geometries. The  theory of partial inductances 
as  presented in this paper is directed  toward  the circuit 
designer or  the engineer concerned with overall  systems 
performance.  Chief  among its  advantages is the  fact  that 
very  complex geometries  can now be easily dealt with. 
Further,  the  analysis  has  been designed for digital com- 
putation, which represents  an  advantage  over previous 
work  that  dates  prior  to  the  time  when digital computers 
were widely available. To  cite a further  example of the 
usefulness of partial inductances,  the  inductance of open 
loops  on integrated  circuits can  be uniquely charac- 
terized. 

To  review, the  geometries considered have been 
mathematically described, at least in an  approximate 
sense, by a set of straight conductor segments with a 
locally constant  cross  section.  Current  has been assumed 
to flow in the direction of the  axes of the  conductors. 
Further,  sharp  corners  have  been  approximated in the 
most convenient way, since  the  extent of the  corners is 
mostly small compared to the length of the  conductors. 
Conductors of an  arbitrary  cross  section  can be in- 
cluded  by the formulation  given here.  Also,  the method 
is not limited to simple arrangements  since partial 
inductances follow the rules of network analysis. How- 
ever,  approximations  are  necessary in many cases. 

All the  necessary  expressions  for a computer imple- 
mentation of the  concepts  have  been given here. 
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