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Arbitrary Pulse Shape Synthesis via Nonuniform 
Transmission Lines 

scan c .  BURHART, MEMBER, IEEE, AND RUSSELL B. WILCOX 

Abstract -A discrete inverse scattering technique is used to define the 
impedance profile for a nonuniform transmission line which reflects an 
arbitrary waveform. Initially charged nonunihrm lines, switched out 
into a general load, can also be synthesized by this method and are 
discussed. The direct or “layer peeling” algorithm is applied to generate 
profiles which were subsequently analyzed using the one-dimensional 
finite difference method and fabricated in stripline. Excitation for the 
nonuniform line was done using a charged line connected to a photocon- 
ductive silicon switch triggered by a mode locked YLF laser. Several 
lines were fabricated relevant to amplitude modulation of the master 
oscillator laser pulse for fusion experiments. 

I. INTRODUCTION 
Nonuniform impedance transmission lines have been studied 

by various researchers for the past four decades. An early 
entrant in this area was Orlov [l], who first developed the theory 
for nonuniform lines of arbitrary impedance profile. His work 
was taken further by Youla [2] and Wohlers [3], who developed 
realizability and uniqueness proofs for resistive or inductive 
terminations in the frequency domain. Gopinath [4] presented 
an excellent treatise on the existence and uniqueness of nonuni- 
form transmission lines in the time domain given the impulse 
response. His uniqueness constraint was that the transmission 
line propagation velocity be constant. Given Gopinath’s result, 
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Fig. 1 .  Schematic of the optical pulse shaping apparatus used in the Liver- 
more laser fusion facility. A square 4 kV wave is reflected and shaped by 
the nonuniform transmission line and then routed to the Pockels cell. The 
shaped optical pulse is windowed in time by the “slicer” Pockels cell, 
which improves the contrast while also slicing away unwanted residuals. 

what was subsequently needed was a practical inversion or 
synthesis technique, and this was provided by Bruckstein and 
Kailath in their two landmark papers [5], [6]. This method is 
reviewed and extended here to include switched charged lines 
and is then applied to a particular pulse shaping problem 
relevant to laser fusion experiments. 

A review of recent pulse shaping methods for pulses less than 
10 ns in length primarily involves shorted stubs and delay lines 
of different lengths which are recombined to synthesize discrete 
stepped waveforms. The original paper on this was by Ross [71, 
who generated 1-3 GHz wave packets from a step input using 
shorted and open stubs along a delay line. The same method 
was applied by Luthjens et al. [8], [9] to generate nanosecond 
square waves and by Margulis and Persson [lo], who developed 
a semirigid coaxial cable version capable of sub-100-ps shaping. 
Haner and Warren [ 121 demonstrated picosecond low-voltage 
shaping by combining identically shaped, programmable ampli- 
tude pulses, each delayed so as to build up the desired envelope. 

Precision optical pulse shaping is a requirement for efficient 
laser drive of inertial confinement fusion targets. This is a result 
of target physics constraints as well as of system nonlinearities 
and laser saturation. The optical pulse shaping apparatus we 
used is shown in Fig. 1, where the shaped electrical pulse is 
generated by an Auston switch [13] and a nonuniform line. Until 
recently, the nonuniform line used was a conductive strip sus- 
pended within a conducting U-shaped channel by a series of 
adjustable dielectric micrometer extensions [ 141-[16]. However, 
hysteresis, tedious trial and error adjustment, and an inability to 
make pulses required for some recent experiments have limited 
its usefulness. Applying the methods derived in the following 
section, stripline nonuniform lines have been synthesized which 
generate our required pulse shapes. 

11. LAYER PEELING TRANSMISSION LINE SYNTHESIS 

Consider the nonuniform line shown in Fig. 2, represented by 

length. Each section is characterized by its impedance z(x>, 

is convenient to transform the voltage and current into right- 
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current I ( x ,  t ) ,  and voltage v(x, t ) .  To carry out the synthesis it 
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Fig. 3. Notation used to designate the right- and left-traveling waves. The 
subscript denotes the junction, and the superscript + or - refers to the 
side of the junction on which the wave amplitudes are measured. 

Fig. 2. The nonuniform transmission line is discretized into equal-length 
sections of constant impedance. The propagation velocity is assumed to be 
a constant independent of x .  

which is equivalent to a standing zero-frequency wave: 

Vo i =  1 , 2 , 3 ; .  ., N WR: (t=O)=WL: ( t = O ) = -  
and left-traveling waves: 2 J z ,  ’ 

Finally, we adopt a notation which samples the section mid- 
t ) m ) / 2 .  ( 2 )  points of the two waveforms and follows the right-traveling wave wL(x’ t ,  = ( V ( X ’  t)’m - 

At each junction the waves are designated as shown in Fig. 3, 
WR; being the right-traveling wave amplitude at location x, - E ,  

and WR: the right-traveling wave amplitude at x, + E ,  where 
€ 4 0 .  The left-traveling waves WL; and WL: are similarly 
defined. 

in time: 

WL;, = WL (x  = i A x  - E ,  t = ( i + 2 (  j - 1 ) ) A t )  

WL;, = WL ( X  =  AX + E ,  t = ( i  + 2 ( j -  1 ) ) A t )  

(loa) 

(lob) 

From continuity of voltage and current at x = x ,  we have WR;, = WR ( x  = i A x  - E ,  t = ( i  + 2 ( j  - 1 ) ) A t )  (10~)  

WRLi = WR ( x  = i A x  + E ,  t = ( i  + 2 ( j  - 1 ) ) A t )  (10d) =(WRY +WL,)  = G ( W R :  +WL:) ( 3 )  
1 1 

(WR; -WL;)=-(WR+ -WL:). ( 4 )  E + 0 .  

With this notation, we write the following from (7), (81, and (9), 
with the additional constraint that the impedance connected to 
the last line section at x = x N  + A x  is infinity (open circuit). 
This allows us to write (13) ,  extending the initial condition (9) 
until the right-traveling wave reaches the section Zi. The con- 
straint is not necessary for V, = 0: 

@z Jz, 
Defining the reflection coefficient 

z; - Z , & ,  
k . = -  
, z; + z;-, (5) 

we solve for the wave variables WR: and WLT : 

Equation ( 6 )  is written in transfer matrix form, which is suitable 
for the layer peeling synthesis. Now, let the given right- and 
left-traveling waves (incident and reflected waves) at x = x 1  be 
defined as the piecewise-constant functions 

WR; = a ,  0 G t < 2 A t  

a2 2 A t < t < 4 A t  

a3 4 A t < t < 6 A t  

aN 2( N - 1 ) A t  G t < 2 N A t  (7) 
WL; = b l  O < t < 2 A t  

b,  2 A t < t < 4 A t  

b,  4 A t < t < 6 A t  

WR<,= ai, j =  1 , 2 , 3 ; . . ,  N ( 1 1 )  

W L , , =  bj, j =  1 , 2 , 3 ; .  ., N ( 1 2 )  

( 1 3 )  WL?, = - 
2 J z , .  

V” 

A key point of the formulation thus far is that the transmis- 
sion line has been broken into sections of electrical length A t ,  
while the excitation and response functions are discretized into 
sections of length 2 A t .  This is because a change in the reflected 
wave caused by the junction i + l  occurs no sooner than 2 A t  
after that due to junction i .  

Equation ( 6 )  is now rewritten to explicitly include the time 
index: 

Equation ( 1 4 )  can be solved for k ,  when j =  1 using the initial 
condition (13): 

6 ,  2( N - 1 ) A t  < t < 2 N A t  (8) 

time t = 0, the transmission line has an initial charge voltage V,,, 
where A t  = A x / c ,  c being the wave propagation velocity. At WL;, = - vo - ( l - k ~ ) - 1 / 2 ( - k l W R ; l + W L ; l ) .  - ( 1 5 )  

2 J z ,  
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Applying ( 5 )  to eliminate Z,, and rearranging, 

With (16) we peel away one layer of the piecewise-constant 
impedance transmission line and obtain the value for Z ,  using 
(5). Equation (14) is then applied to determine the values for 
WR;, and WL;,. At this point we have derived the equations 
such that, given the initial charge V,, and the right- and left- 
traveling waves to the left of any junction i, we can calculate the 
right- and left-traveling waves to the right of the junction. What 
remains is to relate the waves at junction i to those at junction 
i + 1. This is trivially done, since the translation by A x  along any 
of the Z, sections corresponds to a time shift of A t  for the 
right ( -  A t )  and left (+ A t )  traveling waves. Using the indexing 
from (lo), we translate by A x  and advance time by A t :  

WR,Y+,,, = WR,tj, (17a) 
WL,,,, = WLLi+,, j =  1,2,3;. ., N - i .  (17b) 

This completes the derivation, since one layer has been peeled 
away and a translation to the next junction has been done. The 
entire process is summarized in the following algorithm: 

j = 1,2,3, .  . . , N - i 

a) Start with a given Z,,, i = 1, and with 

WR;,, = a,, j = 1,2,3;. ., N (from (7)) 
WL;,,=b,, j = 1 , 2 , 3 ; . . , N  (from(8)). 

b) Solve for k ,  from (16) and then solve for Z,  using (5). 
c) Calculate WR;, and WL,tj using ki from step (b), and by 

applying (14) for j = 1,2,3,. . . , N + 1 - i. 
d) Calculate WR,,,, and WL;+,,, using (17). 
e) Increment i by 1, and repeat steps (b) through (e) until 

The three cases of initial and boundary conditions for which this 
algorithm is useful are 

i) V,, = 0, ai # 0: Initially discharged line which modifies and 
reflects the incident wave. 

ii) V,, # 0, a j  = 0 for all j: Initially charged line which is 
switched into the pure resistive matched load Zo. 

iii) V, # 0, ai # 0: Initially charged line which is switched into 
an arbitrary load. In this case the ai are calculated from 
the b, and from the load reflected wave response. 

i = N. 

Case (i) is applied in the following example. 

111. COMPUTATIONAL ASPECTS 

The simplicity of the layer peeling algorithm is complicated 
somewhat by the reflected wave amplitude, bandwidth, and, for 
case (i) above, the incident wave a,. The amplitude was easiest 
to handle, since we were seeking a specific reflected wave shape 
irrespective of its peak amplitude. During step (b) in the synthe- 
sis algorithm, a value of 2, may fail to satisfy Z,,, < Z,  < Z,,,, 
where (Z,,,, Z,,,) is the physically realizable impedance range. 
When this happens, one can simply scale down the desired wave 
(6,) by some factor, scale up Vo, or scale up the incident wave 
(a,) and start over at step (a). Note that the reflected wave (b,) 
should be scaled with an offset of V,,(Rload / ( Z o  + Rlodd)), where 
Rload is the resistive part of the load impedance. Thus for (i), the 
b, are scaled with no offset, while for (ii) the b, are scaled and 
then offset by V,,/2. 

2oo - 
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Fig. 4. Transmission line impedance profile generated by the layer peeling 

method. The incident waveform was a unit step, and the reflected wave- 
form is that of Fig. 7. 

The bandwidth of the reflected wave can be a problem in case 
(i) above, since the reflected wave power spectrum cannot 
exceed that of the incident wave at any frequency. We dealt with 
this by filtering both waveforms with a fourth-order Bessel 
low-pass filter, where the 3 dB point was chosen to modify the 
waveforms by a small but acceptable amount. Bandwidth prob- 
lems are observed when excessive scaling is required to achieve 
a solution. 

For case (i), the first element a, of the incident wave cannot 
be zero or else (16) blows up. Also, if a, is too small relative to 
the incident waveform peak amplitude, a noisy solution results. 
These problems were solved by removing the elements a, ,  a2, . . . 
until a value was found that was at least 8% of the maximum 
value. Factors of 5% to 20% generally yielded well-behaved and 
accurate results. 

IV. EXAMPLE 

Shaped optical pulses for laser fusion experiments have been 
generated using the apparatus shown in Fig. 1. The configura- 
tion used was a reflecting nonuniform line driven by a 50 ps rise 
time step input from the Auston switch pulser. The desired 
electrical pulse is shown in Fig. 7, characterized by two initial 
pulses approximately 500 ps wide, followed by a 1.1 ns drive 
pulse. Notable in this pulse is the requirement that the voltage 
return to zero between the peaks. Layer peeling was applied to 
design a transmission line which would reflect this pulse shape, 
with A t  = 5 ps and a relative dielectric constant of 1 (for the 
prototype line). Implemented on a VAX 8650, the computations 
consumed less than 20 s of CPU time to solution, which is 
shown in Fig. 4. 

Suitable line fabrication methods at these voltages are coaxial, 
stripline, and microstrip. Coaxial is preferred only for its excel- 
lent range of impedances and its high voltage operation when 
pressurized with SF,. Stripline was chosen, however, because of 
fabrication considerations and because microstrip worked poorly 
in the transitions to very narrow strip widths. For fabrication, 
0.125-in.-thick RT-Duroid in a stripline configuration has a 
“reasonable” range of impedances, 5 fl < Z < 180 0, with cor- 
responding strip widths of 3 in. to 5 mils. For artwork genera- 
tion, we developed a software package that converted the strip 
dimensions to Gerber photoplotter commands, which exposed 
the areas where metal was to be removed. The resultant printed 
circuit is shown in Fig. 5 ,  and is the physical realization of the 
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Fig. 5 .  Photograph of the nonuniform stripline prior to installing the cover ground plane. It was Pabricated in 0.125 RT-Duroid 
with type C conncctors. 

Fig. 6. Reflected waveform from the nonuniform line lor a n  incident \tep 
excitation waveform, measured using a < 30 ps step (Tek S-52 generator) 
and a Tek S-6 sampling head. 

impedance profile from Fig. 4. The strip widths were deter- 
mined using Howe [17] and a zero-finding routine. For our 
experiments we actually fed the nonuniform line with two paral- 
lel 50 R lines, which allowed our starting impedance to be 25 R. 
The choices for high-frequency, high-voltage connectors are 
limited to HN, C, and SC, and we chose C because of their 
availability and ease of use. A panel mount C with the round 
center pin machined to a 10 mil flat was soldered to the strip, 
with the connector body then soldered to the outer ground 
planes. 

The step response of the line was measured using a Tektronix 
7104 oscilloscope with a 7S12 sampling TDR plug-in which was 
equipped with an S-52 pulse generator and an S-6 sampling 
head. The 50 R output from the TDR was split by an un- 
matched SMA tee and fed through matched-length 50 R cables 
to the nonuniform line. The line response is shown in Fig. 6, and 
is overlaid with the desired pulse shape (after amplitude scaling) 
in Fig. 7. The last narrow pulse following the main (wide) pulse 
in Fig. 7 is an artifact irrelevant to the line synthesis. This is 
because the desired response is specified only up to the 3.5 ns 
point, after which the leftover line voltage propagates out as it 
will. The leftover energy did not appear in the optical pulse, 
however, since it was sliced out by the second Pockels cell. 
Simulation of the impedance profile using a one-dimensional 
finite difference program [ 181 reproduced the desired waveform 
nearly identically, including the unwanted peak after the main 

1.5 

1 .o 
A 

2 

0 

0 1 2 3 4 
time (ns) 

Fig. 7. Thc desired reflected waveform that was used in the example is 
overlaid with the measured result from Fig. 6. The desired waveform 
bccomcs identically zero between the peaks, and terminates at 3.5 ns. The 
measured wavelorni shows the unwanted (hut irrelevant) peak which oc- 
curs after 3.5 ns. 

pulse. Throughout our cfforts to synthesize useful lines, analysis 
by thc finite difference method proved quite valuable as a 
design check. A typical simulation of 6000 time steps on a line 
sectioned into 900 sections of 0.5 mm required 42 s of CPU time 
on a VAX 8650, in double precision. Simulations were also 
performed on a switched charged linc designed to generate the 
pulse shape in Fig. 7, verifying, at least computationally, the 
concept. 

V. CONCLUSIONS 

Using the layer peeling method we were able to synthesize a 
complex high-voltage pulse shape for use in laser fusion experi- 
ments to an extraordinary dcgree of precision. Furthermore it  is 
possible to generate any arbitrary pulse shape by reflecting a 
step pulse off a synthesized nonuniform transmission line, pro- 
vided the powcr spectrum of the reflected pulse does not exceed 
that of the input pulse at any frequency. The main disadvantage 
of this pulse shaping mcthod is that the shaped pulse travels 
directly back at the generator, which limits the choice of pulse 
generators to a charged linc with a series switch on both ends. 
In the switched charged line configuration, only one switch is 
required, but the voltage pulse is offset by V(, /2  for a matched 
load. 
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Electromagnetic Wave Transmission in a Well 
Logging Cable-Theory 

JAMES R. WAIT, FELLOW, IEEE 

I. INTRODUCHON 

Multiconductor cables continue to be employed for transmis- 
sion of information in adverse environments. A good example is 
the well logging cable, which is lowered into deep boreholes. 
For structural reasons the cable must be supported and pro- 
tected by a concentric steel sheath. The individual conductors 
(typically seven or eight) located in the lossy plastic filler are 
each coated with a dielectric of minimal loss. Because the cables 
have been designed from a mechanical engineering viewpoint, 
the electrical performance is not optimum. Nevertheless, there 
is a need to understand the quality of the signal transmission. 
We address this problem here. But first we review some of the 
relevant background investigations available in the open journal 
literature. 

Pipes [I], in a generic paper, showed that the form of the 
classical differential equations is valid only in the case of a 
system of perfect conductors embedded in a perfect dielectric. 
That is, the system may be specified by self and mutual series 
impedances and shunt admittances only in the ideal case. He 
pointed out, however, that the slightly dissipative case could be 
handled by a perturbation of the loss-free solutions. This ap- 
proach has often been employed in engineering calculations of 
multiconductor systems where the frequency dependence of the 
line parameters was accounted for but the spatial dispersion was 
ignored. That is, the dependence of the effective line parame- 
ters on the propagation constants of the modes was not consid- 
ered. Soviet investigators (e.g. [2] and [3]) seem to have been the 
first to properly incorporate spatial dispersion in this context. 
Important subsequent theoretical developments by Lenahan [4] 
and Belevich [5] were published almost simultaneously. As they 
correctly point out, the general quasi-static limit is not synony- 
mous with the TEM (transverse electromagnetic) approximation 
so often employed. Actually, a class of cylindrical multiconduc- 
tor lines has been analyzed by a “rigorous” iterative method by 
Chan and Mittra [6] but it is not obvious if the spatial dispersion 
of the line parameters has been incorporated. Similar comments 
apply to the analysis by Cangellaris [7], who was concerned with 
excitation of the system by sources. But, for their applications, 
the TEM approximation may be adequate. 

A key ingredient of a rigorous quasi-static analysis of a 
multiconductor system is to allow for the intrinsic coupling 
between the TE (transverse electric) and TM (transverse mag- 
netic) field configurations in obtaining a valid mode equation 
before examining the low-frequency limit of the solution. A good 
example of a case where such an approach is needed is in the _ _  

Abstract-A well logging cable is idealized as a uniform cylindrical 
structure consisting of N axial dielectric-coated thin wires in a lossy 
medium, all encased by a metallic sheath. A general modal equation is 
developed which is specialized to IOW frequencies where quasi-static 
conditions prevail. It is pointed out that the line parameters are spa- 

analysis of radio wave transmission in a conductor-laden tunnel 
[8]-[ll]. In such cases, the line parameters are certainly spatially 
dispersive in addition to being frequency dependent. This tunnel 
configuration has certain similarities to the multiconductor well 
logging cable although there is the important distinction that, in 
the well logging case, the filler is a lossy dielectric. 
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_ _  - 
It is our purpose here to present the relevant formulation for 

the well logging cable and reduce it to a form for numerical 
studies. 
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