

1

Transmission Line Basics

Prof. Tzong-Lin Wu

NTUEE

Outlines

Transmission Lines in Planar structure

 α_{c}

 α_{d}

Key Parameters for Transmission Lines

- Relation of V / I: Characteristic Impedance 1. Z_0 Velocity of Signal: Effective dielectric constant ε_e 2. **Conductor** loss
- 3. Attenuation: **Dielectric** loss

Lossless case

Quasi-TEM assumption

- R_0 = resistance per unit length(Ohm / cm)
- G_0 = conductance per unit length (mOhm / cm)
- L_0 = inductance per unit length (H / cm)
- C_0 = capacitance per unit length (F/cm)

KVL:
$$\frac{dV}{dz} = -(R_0 + jwL_0)I$$

KCL: $\frac{dI}{dz} = -(G_0 + jwC_0)V$
Solve 2nd order D.E. for
V and I

Two wave components with amplitudes V+ and V- traveling in the direction of +z and -z

$$V = V_{+}e^{-rz} + V_{-}e^{+rz}$$
$$I = \frac{1}{Z_{0}}(V_{+}e^{-rz} - V_{-}e^{+rz}) = I_{+} + I_{-}$$

Where propagation constant and characteristic impedance are

$$r = \sqrt{(R_0 + jwL_0)(G_0 + jwC_0)} = \alpha + j\beta$$
$$Z_0 = \frac{V_+}{I_+} = \frac{V_-}{I_-} = \sqrt{\frac{R_0 + jwL_0}{G_0 + jwC_0}}$$

 α and β can be expressed in terms of (R_0, L_0, G_0, C_0)

$$\alpha^2 - \beta^2 = R_0 G_0 - \omega^2 L_0 C_0$$
$$2\alpha\beta = \omega(R_0 C_0 + G_0 L_0)$$

The actual voltage and current on transmission line:

$$V(z,t) = \operatorname{Re}\left[\left(V_{+}e^{-\alpha z}e^{-j\beta z} + V_{-}e^{+\alpha z}e^{j\beta z}\right)e^{jwt}\right]$$

$$I(z,t) = \operatorname{Re}\left[\frac{1}{Z_0} (V_+ e^{-\alpha z} e^{-j\beta z} - V_- e^{+\alpha z} e^{j\beta z}) e^{jwt}\right]$$

Analysis approach for Z_0 and T_d (Wires in air)

Analysis approach for Z_0 and T_d (Wires in air): Ampere's Law for H field

$$L = \psi_e / L$$

FIGURE 4.5 Illustration of a basic subproblem of determining the flux of a current through a surface: (a) dimensions of the problem; (b) use of Gauss' law; (c) an equivalent but simpler problem.

11

The per-unit-length Parameters (E): Gauss's Law

The per-unit-length Parameters (E)

FIGURE 4.7 Illustration of a basic subproblem of determining the voltage between two points: (a) dimensions of the problem; (b) an equivalent but simpler problem.

$$V = \frac{q}{2\pi\varepsilon_0} \ln(\frac{R_2}{R_1})$$
$$C = Q/V$$

c. For example Determine the L.C.G.R of the <u>two-wire line</u>.

The per-unit-length Parameters

Homogeneous structure

TEM wave structure is like the DC (static) field structure

 $LG = \mu\sigma$ $LC = \mu\varepsilon$

So, if you can derive how to get the L, G and C can be obtained by the above two relations.

2C

L/2

The per-unit-length Parameters (Above GND)

FIGURE 4.9 Determination of the per-unit-length capacitance of a wire above a ground plane with the method of images.

Why?

d. How to determine L,C for microstrip-line.

$$\mu_{\! 1}, \mathcal{E}_{\! 1}$$

 μ_0, \mathcal{E}_0

- 1) This is inhomogeneous medium.
 - 2) Nunerical method should be used to solve the C of this structure, such as Finite element, Finite Difference...
 - 3) But ℓ_e can be obtained by

$$\ell_e C_0 = \mu_0 \mathcal{E}_0 \implies \ell_e = \frac{\mu_0 \mathcal{E}_0}{C_0}$$

where C_0 is the capacitance when ε_1 medium

is replaced by ε_0 medium.

Analysis approach for Z_0 and T_d (Strip line)

Approximate electrostatic solution

The fields in TEM mode must satisfy Laplace equation

 $\nabla_t^2 \Phi(x, y) = 0$

2

where Φ is the electric potential

The boundary conditions are

 $\Phi(x, y) = 0 \text{ at } x = \pm a / 2$

 $\Phi(x, y) = 0$ at y = 0, b

Analysis approach for Z_0 and T_d

3. Since the center conductor will contain the surface charge, so

4. The unknowns A_n and B_n can be solved by two known conditions:

 $\begin{cases} \text{The potential at } y = b/2 \text{ must continuous} \\ \text{The surface charge distribution for the strip: } \rho_s = \begin{cases} 1 & \text{for } |x| \le W/2 \\ 0 & \text{for } |x| \ge W/2 \end{cases} \end{cases}$

Analysis approach for Z₀ and T_d

У

Analysis approach for Z₀ and T_d (Microstrip Line)

The fields in Quasi - TEM mode must satisfy Laplace equation

 $\nabla_t^2 \Phi(x, y) = 0$

1.

where Φ is the electric potential

The boundary conditions are

$$\Phi(x, y) = 0 \text{ at } x = \pm a / 2$$

 $\Phi(x, y) = 0$ at $y = 0, \infty$

Analysis approach for Z₀ and T_d (Microstrip Line)

3. Since the center conductor will contain the surface charge, so

$$\Phi(x, y) = \begin{cases} \sum_{\substack{n=1\\odd}}^{\infty} A_n \cos \frac{n\pi x}{a} \sinh \frac{n\pi y}{a} & \text{for } 0 \le y \le d \\ \sum_{\substack{n=1\\odd}}^{\infty} B_n \cos \frac{n\pi x}{a} e^{-n\pi y/a} & \text{for } d \le y \le \infty \end{cases}$$

4. The unknowns A_n and B_n can be solved by two known conditions and the orthogonality of *cos* function :

 $\begin{cases} \text{The potential at } y = d \text{ must continuous} \\ \text{The surface charge distribution for the strip: } \rho_s = \begin{cases} 1 & \text{for } |x| \le W/2 \\ 0 & \text{for } |x| \ge W/2 \end{cases} \end{cases}$

Analysis approach for Z₀ and T_d (Microstrip Line)

Analysis approach for Z_0 and T_d (Microstrip Line)

To find the effective dielectric constant ε_{e} , we consider two cases of capacitance 1. C = capacitance per unit length of the microstrip line with the dielectric substrate $\varepsilon_{r} \neq 1$

2. C_0 = capacitance per unit length of the microstrip line with the dielectric substrate $\varepsilon_r = 1$

8.

Tables for Z_0 and T_d (Microstrip Line)

Z ₀ (Ω)	20	28	40	50	75	90	100
${\cal E}_{ m eff}$	3.8	3.68	3.51	3.39	3.21	3.13	3.09
L ₀ (nH / mm)	0.119	0.183	0.246	0.320	0.468	0.538	0.591
C ₀ (pF/mm)	0.299	0.233	0.154	0.128	0.083	0.067	0.059
T ₀ (ps/mm)	6.54	6.41	6.25	6.17	5.99	5.92	5.88

Fr4 : dielectric constant = 4.5 Frequency: 1GHz

Tables for Z_0 and T_d (Strip Line)

Ζ ₀ (Ω)	20	28	40	50	75	90	100
${\cal E}_{ m eff}$	4.5	4.5	4.5	4.5	4.5	4.5	4.5
L ₀ (nH / mm)	0.141	0.198	0.282	0.353	0.53	0.636	0.707
C ₀ (pF/mm)	0.354	0.252	0.171	0.141	0.094	0.078	0.071
T ₀ (ps / mm)	7.09	7.09	7.09	7.09	7.09	7.09	7.09

Fr4 : dielectric constant = 4.5 Frequency: 1GHz

- Analysis approach for Z_0 and T_d (EDA/Simulation Tool)
- 1. HP Touch Stone (HP ADS)
- 2. Microwave Office
- 3. Software shop on Web:
- 4. APPCAD

(http://softwareshop.edtn.com/netsim/si/termination/term_article.html)

(http://www.agilent.com/view/rf or http://www.hp.woodshot.com)

Concept Test for Planar Transmission Lines

Loss of Transmission Lines

Typically, dielectric loss is quite small $-> G_0 = 0$. Thus

$$Z_{0} = \sqrt{\frac{R_{0} + jwL_{0}}{jwC_{0}}} = \sqrt{\frac{L_{0}}{C_{0}}} (1 - jx)^{1/2}$$

$$r = \sqrt{(R_{0} + jwL_{0})(jwC_{0})} = \alpha + j\beta \qquad w = \frac{R_{0}}{L_{0}}$$
Highly Lossy $\leftarrow 1 \rightarrow N$

where
$$x = \frac{R_0}{wL_c}$$

- Lossless case : x = 0
- Near Lossless: x << 1
- Highly Lossy: x >> 1

Figure 4.9 Propagation of a cable with fixed series resistance (no skin effect).

Loss of Transmission Lines

•For Lossless case: • For Near Lossless case:

Loss of Transmission Lines

• For highly loss case: (RC transmission line)

Loss of Transmission Lines (Dielectric Loss)

TABLE 5.3 SOME TYPICAL LINE PARAMETERS

Case	L_o (nH/cm)	C_o (pF/cm)	R_o (Ω /cm)	\sum_{o} (Ω)	I_o (ps/cm)	ϵ_r	$R_o/\omega L_o$
PCB	5	1	0.050 ^b	70.7	70.7	4.5	0:0023
MCM	5	1	5	70.7	70.7	4.5	0.23
Chip	2.2	2	500	32.9	65.8	3.9	52.5

^b4-mil width, 1-oz Cu.

The loss of dielectric loss is described by the loss tangent

$$\tan \delta_D = \frac{G}{wC}$$
 FR4 PCB $\tan \delta_D = 0.035$

$$\therefore \alpha_D = \frac{GZ_0}{2} = (wC \tan \delta_D Z_0) / 2 = \pi f \tan \delta_D \sqrt{LC}$$

Loss of Transmission Lines (Skin Effect)

Skin Effect

Loss of Transmission Lines (Skin Effect)

Loss of Transmission Lines (Skin Effect)

f(MHz)	100	200	400	800	1200	1600	2000
$\delta_{\rm s} = \sqrt{\frac{1}{f\mu\sigma}}$	6.6um	4.7um	3.3um	2.4um	1.9um	1.7um	1.5um
$R_s(\Omega)$	2.6m	3.7m	5.2m	7.4m	9.0m	10.8m	11.6m
	ohm						
Trace	1.56	2.22	3.12	4.44	5.4	6.48	7.0
resistance	ohm						

Skin depth resistance
$$R_s = \sqrt{\frac{\pi\mu f}{\sigma}}(\Omega)$$

•

6mil Cu 17um

$$\mu = 4\pi \times 10^{-7} H / m$$

$$\sigma(Cu) = 5.8 \times 10^{7} S / m$$

Length of trace = 20cm

For comparison: (Set Conditions)

- 1. Differential impedance = 100
- 2. Trace width fixed to 8mil
- 3. Coupling coefficient = 5%
- 4. Metal: 1 oz Copper

Question:

Which one has larger loss by skin effect?
 Which one has larger loss of dielectric?

40

Skin effect loss

Frequency	Stripline	Dual Stripline	Percent Difference		
	Resistance Ω / feet	Resistance Ω / feet			
500 MHz	6,144	6.648	8.2%		
1.5 GHz	10.668	11.508	7.9%		
2.5 GHz	13.728	14,832	8.0%		

Table 3 - Simulated Results of Skin Effect Losses

Skin effect loss

Figure 18 - Graph of Simulated Results of Skin Effect Losses

Look at the field distribution of the common-mode coupling

Figure 12 - Differential Routing in a Dual Stripline Geometry

Coplanar structure has more surface for current flowing

How about the dielectric loss ? Which one is larger?

The answer is dual stripline has larger loss. Why ?

The field density in the dielectric between the trace and GND is higher for dual stripline.

Which one has higher ability of rejecting common-mode noise ?

The answer is coplanar stripline. Why ?

-The output waveform shown results from a 1-volt, 32bit inverting K28.5 input bit pattern (5 Gbps, 60ps edges) that is applied to a system with two throughholes, two AMP HS3 connectors, and a 12 mil, 50 Ohm stripline trace that is ~18" long.

49

Material	€ r* @ 1 MHz	€ r* @ 1 GHz	tan δ* @ 1 GHz	Relative Cost [™]
FR4	4.30	4.05	0.020	1
GETEK	4.15	4.00	0.015	1.1
ROGERS 4350/4320	3.75	3.60	0.009	2.1
ARLON CLTE	3.15	3.05	0.004	6.8

* Measured from test data

**Cost factor derived from 10" by 20", 12-layer backplane

FR4: Jitter = 0.30 UI Opening = 238 mV

GETEK: Jitter = 0.28 UI Opening = 268 mV

ROGERS 4350: Jitter = 0.20 UI Opening = 426 mV

ARLON CLTE: Jitter = 0.19 UI Opening = 520 mV

-The output waveforms shown result from a 1-volt, 32-bit inverting K28.5 input bit pattern (10 Gbps, 60ps edges) that is applied to a 12 mil, 50 Ohm stripline trace that is 18" long.

ROGERS 4350

C1 EZ 73 84

15 16 Å7 78 5.8 Term

51

Intuitive concept to determine Z₀ and T_d

•How physical dimensions affect impedance and delay

1

1€.

:10

h.

Sensitivity is defined as percent change in impedance per percent change in line width, *log-log plot* shows sensitivity directly.

 Z_0 is mostly influenced by w / h, the sensitivity is about 100%. It means 10% change in w / h will cause 10% change of Z_0

The sensitivity of Z_0 to changes in ε_r is about 40%

Figure 4.31 Characteristic impedance of a microstrip transmission line versus geometry and permittivity. (See formulas in Appendix C.)

Intuitive concept to determine Z₀ and T_d

Ground Perforation: BGA via and impedance

Figure 1. Section of a typical 1600pin BGA pin field with signal traces running through. Drawing is not to scale.

Figure 2: Characteristic Impedance measurements for a 68.80hm (ideal value) trace over (a) solid reference plane, and (b)perforated reference plane.

Ground Perforation: Cross-talk (near end)

Figure 1. Section of a typical 1600pin BGA pin field with signal traces running through. Drawing is not to scale.

		1			 		
(a) Aggressor	ſ	-	1	÷		γ	
	J				 * * * *	` ^	ļ
(a) Receptor	~				 	\sim	
	{	<u>.</u>			 		
	Λ	\sim	ž	~	 ~		
(b) Aggressor	7*			·}	 	2	
	<u>_</u>		++++	++++	 	2	***
(b) Receptor	~~	000	Į		 		}
	-1 50()p	landa Al Maria	ar) sliv	R R	 TT:		

Figure 3: Near-end crosstalk measured for (a) solid reference plane and (b) perforated reference plane with both ends of Trace B terminated in 500hm.

Ground Perforation : Cross-talk (far end)

Figure 1. Section of a typical 1600pin BGA pin field with signal traces running through. Drawing is not to scale.

	\mathcal{M}	\sim	~~~					
(a) Astressor	7		{			· • · · · · ·	5	
	+++		***	• • • • •	••••		<u></u>	<u>L:::</u> :
						{ · · · · ·		
(a) Receptor				L A	<u>^-</u>	<u> </u>		
						1		
	<u> </u>	_				·····		
(b) Aggressor						1		
		1.1.4-1-	** * *		• • • •	<u>}</u>	• • P=	
(b) Repensor	·				1			
				*		1		
	i de la composición d En esta de la composición de la		1	ko – I	1 - 20			

Figure 4: Far-end crosstalk measured for (a) perforated reference plane and (b) solid reference plane with both ends of Trace B terminated in 500hm.

Reasons for splits or slits on GND planes

- DC isolation between different supply voltages.
- AC isolation of digital from low noise analog circuits.
- Low cost method of removing unwanted resonances from the power distribution system.
- Nearby touching via holes.

Disadvantages of Image Plane Slits and Splits

- Transverse slits in the image planes present a discontinuity to the flow of AC currents.
- Result in significant signal degradation.
- Help generate common mode currents that result in significant radiation.

Two most commonly used:

- AC shorting (stitching) the two separated planes with capacitors.
- Using differential lines to cross the split.

EM Radiation: Solid vs. Split Plane

Differential Microstrip

Input side

Signal Quality: Single vs. Diff. (I)

Output side

Signal Quality: Single vs. Diff. (O)

65

EM Radiation: Single vs. Diff.

66

Signal Quality: Tighter Coupling

EM Radiation: Tighter Coupling

RDRAM Signal Routing

•Power:

VDD = 2.5V, Vterm = 1.8V, Vref = 1.4V

•Signal:

0.8V Swing: Logic 0 -> 1.8V, Logic 1 -> 1.0V 2x400MHz CLK: 1.25ns timing window, 200ps rise/fall time Timing Skew: only allow 150ps - 200ps

•Rambus channel architecture: (30 controlled impedance and matched transmission lines)

- Two 9-bit data buses (DQA and DQB)
- A 3-bit ROW bus
- A 5-bit COL bus
- CTM and CFM differential clock buses

- RDRAM Channel is designed for 28 Ω +/- 10%
 Impedance mismatch causes signal reflections
 Reflections reduce voltage and timing margins
- PCB process variation -> Z₀ variation -> Channel error

Intel suggested coplanar structure

- PCB Parameter sensitivity:
 - H tolerance is hardest to control
 - W & T have less impact on Z₀

73

- How to design Rambus channel in *RIMM Module* with uniform $Z_0 = 28$ ohm ??
- How to design Rambus channel in *RIMM Module* with propagation delay variation in +/- 20ps ??

Impedance Control: (Why?)

Loaded trace

Multi-drop Buses

where C_T is the per - unit - length equivalent capacitance at length L,

including the loading capacitance and the unloaded trace capacitance C_L is the loading capacitance including the device input capacitance C_d , the stub trace capacitance, and the via effect.

In typical RIMM module design

 $\begin{array}{c} \text{Stub} \quad \text{via} \quad \text{Device input capacitance} \\ \text{If } C_L &= 0.2 \text{pF} + 0.1 \text{pF} + 2.2 \text{pF}, \text{ and} \\ \text{If you design unloaded trace } Z_0 &= 56 \Omega \\ \text{the electric pitch } L &= 7.06 \text{mm to reach loaded } Z_L &= 28 \Omega \end{array}$

$$\therefore L_0 = Z_0 \tau = 56\Omega \times 6.77 \text{ psec / mm} = 379 \text{ pH / mm} = 9.5 \text{ pH / mil}$$
$$C_T = \frac{C_L}{L} + \frac{L_0}{Z_0^2} = \frac{2.5 pF}{7.06 mm} + \frac{379 \text{ pH / mm}}{56\Omega^2} = 0.475 \text{ pF / mm}$$
$$\therefore Z_L = \sqrt{\frac{L_0}{C_T}} = 28.3\Omega$$

Modulation trace

Figure 5-5: 8 Device Single-Sided Edge-Bonded Module Device and Electrical Pitch

Device pitch = Device height + Device space

If device pitch > electric pitch, modulation trace of 280hm should be used.

Modulation trace length = Device pitch – Electric pitch

• Effect of PCB parameter variations on three key module electric characteristics

Figure 2-3: PCB Design Parameter Relationships

• Controlling propagation delay:

- Bend compensation
- Via Compensation
- Connector compensation

Bend Compensation

Figure 5-11: Delay Matching (Right Side)

- Rule of thumb: 0.3ps faster delay of every bend
- Solving strategies:
 - 1. Using same numbers of bends for those critical traces(difficult)
 - 2. Compensate each bend by a 0.3ps delay line.

Via Compensation (delay)

For a 8 layers PCB, a via with 50mil length can be modeled as (L, C) = (0.485 nH, 0.385 pF).

 \therefore Delay $T_0 = \sqrt{LC} = 13.7$ psec

Rule of thumb: delay of a specific via depth can be calculated by scaling the inductance value which is proportional to via length.

$$\therefore$$
 30mil via has delay $\approx 13.7 \times \sqrt{\frac{30\text{mil}}{50\text{mil}}} = 10.6p \text{ sec}$

This delay difference can be compensated by adding a 1.566mm to the

unloaded trace (56 Ω)

Via Compensation (impedance)

Compensation and Overcompensation at a Via

Experiment setup and trace design

Figure 1: Geometry of PCB layout.

 Table 1. Comparison of height above PCB reference plane

 and trace proximity to board edge (d).

Height (mils)	d (mils)	d/h	Termination		
45	25	0.55	90 Ω		
45	75	1.67	90 Ω		
45	275	6.11	90 Ω		
45	575	12.8	90 Ω		
45	1956 (centered)	43.5	90 Ω		
90	1956 (centered)	1956 (centered) 21.7 116 Ω			
22	1956 (centered)	88.9	60 Ω		
22	25	1.14	60 Ω		

Measurement Setup

EMI caused by <u>Common-mode current</u> : magnetic coupling Measured by current probe

Fable 2.	Increase	in S ₂₁ a	s the t	race no	ears the l	PCB e	dge.
The reference is a centered trace.							
Distance	from Edo	~ (A)	10	1 AUDY		1	

Distance from Edge (d)	$ \Delta S_{21} $ (dB)		
25 mils.	17.6		
75 mils.	13.1		
275 mils.	6.61		
475 mils.	3.33		

Figure 3: IS₂₁ i measurements with a current probe.

EMI measured by the monopole : E field

Trace height effect on EMI

Figure 8: Comparison of the near-electric field radiation for different trace heights above the reference plane for a centered trace, and trace 25 mils from edge.

Reference

- 1. Howard W. Johnson, "High-speed digital design", Prentice-Hall, 1993
- 2. Ron K. Poon, "Computer Circuits Electrical Design", Prentice-Hall, 1995
- 3. David M. Pozar, "Microwave Engineering", John Wiley & Sons, 1998
- 4. William J. Dally, "Digital System Engineering", Cambridge, 1998
- 5. Rambus, "Direct Rambus RIMM Module Design Guide, V. 0.9", 1999