Crosstalk

Tzong-Lin Wu, Ph.D.
Department of Electrical Engineering
National Taiwan University
Topics:

- Introduction
- Transmission lines equations for coupled lines
 - symmetrical lines and symmetrically driven
 - homogeneous medium
 - symmetrical lines in homogeneous medium
 - symmetrical lines and asymmetrical driven
- Qualitative description of crosstalk
 - Terminations
- Measurement of crosstalk parameters
- How crosstalk noise can be reduced
Introduction

Three characteristics:

1. **Polarity of noise** at near end is opposite to that at the far end.
2. **Noise duration** at near end is larger than that at the far end.
3. **Noise magnitude** at near end is smaller than that at the far end.
Introduction: Physical Geometry of Coupled Lines

Two kind of coupling:
1. Inductive coupling
2. Capacitive coupling

Figure 7.9 Physical geometry of the coupled lines in part (a) has circuit representation (b).
Introduction: cross-talk mechanism of the *inductive coupling*

Qualitative understanding of the coupling mechanism

![Diagram of coupling mechanism](image)

Figure 7.10 Forward and backward traveling waves. The incremental pulses are shown dashed at $t = 0$ and solid at $t = \tau$.

- How about the cross-talk mechanism of the *capacitive coupling*?
Driving signal

Forward coupling

Reverse coupling

Inductive

Capacitive

Derivative of input signal (negative)

Total coupled areas are the same

Rise and fall times same as input

Rise and fall times same as input
Coupled lines equations

\[V_1(z) - V_1(z + \Delta z) = (L_1 \Delta z) \frac{\partial}{\partial t} I_1(z) + (L_m \Delta z) \frac{\partial}{\partial t} I_2(z) \]

\[I_1(z) - I_1(z + \Delta z) = C_1' \frac{\partial}{\partial t} V_1(z + \Delta z) + C_m \frac{\partial}{\partial t} [V_1(z + \Delta z) - V_2(z + \Delta z)] \]
Coupled lines equations

- **Matrix forms**

\[
\frac{d\bar{V}(z)}{dz} = -\bar{L} \frac{\partial}{\partial t} \bar{I}(z)
\]

\[
\frac{d\bar{I}(z)}{dz} = -\bar{C} \frac{\partial}{\partial t} \bar{V}(z)
\]

where

\[
\bar{L} = \begin{bmatrix}
l_{11} & l_{12} \\
l_{21} & l_{22}
\end{bmatrix} = \begin{bmatrix}
L_1 & L_m \\
L_m & L_2
\end{bmatrix}
\]

\[
\bar{C} = \begin{bmatrix}
c_{11} & c_{21} \\
c_{12} & c_{22}
\end{bmatrix} = \begin{bmatrix}
C'_1 + C_m & -C_m \\
-C_m & C'_2 + C_m
\end{bmatrix} = \begin{bmatrix}
C_1 & -C_m \\
-C_m & C_2
\end{bmatrix}
\]

- **$L_{1,2}$**: self-inductance per unit length of line 1 and 2 when isolated
- **L_m**: mutual inductance between line 1 and 2
- **$C'_{1,2}$**: capacitance (to GND) of line 1 and 2 when isolated
- **C_m**: mutual capacitance between line 1 and 2
Coupled lines equations

\[\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} \]

\[C_{11} = C_{1g} + C_{12} \]

\[\begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} \]

For multi-conductor coupled lines

Capacitance matrix=

\[\begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1N} \\ C_{21} & C_{22} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ C_{N1} & C_{N2} & \cdots & C_{NN} \end{bmatrix} \]

Inductance matrix=

\[\begin{bmatrix} L_{11} & L_{12} & \cdots & L_{1N} \\ L_{21} & L_{22} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ L_{N1} & L_{N2} & \cdots & L_{NN} \end{bmatrix} \]
Coupled lines equations

\[V_1(z) = V_{10}e^{j\omega t + \gamma z} \]
\[V_2(z) = V_{20}e^{j\omega t + \gamma z} \]
\[I_1(z) = I_{10}e^{j\omega t + \gamma z} \]
\[I_2(z) = I_{20}e^{j\omega t + \gamma z} \]

\[\gamma \overline{V}_0(z) = -j\omega \overline{L} \overline{I}_0(z) \]
\[\gamma \overline{I}_0(z) = -j\omega \overline{C} \overline{V}_0(z) \]

\[(\overline{A} + \frac{\gamma^2}{\omega^2})\overline{V}_0 = 0 \]

\[\overline{A} = \overline{L} \overline{C} = \begin{bmatrix} L_1 C_1 - L_m C_m & L_m C_2 - L_1 C_m \\ L_m C_1 - L_2 C_m & L_2 C_2 - L_m C_m \end{bmatrix} \]

\[\det(\overline{A} + \frac{\gamma^2}{\omega^2}) = 0 \quad \text{for nontrivial solutions} \]

The \(\gamma \) can be solved with two possible solutions
Symmetrical lines and symmetrical driven

Conditions:
- \(L_1 = L_2 \) (balanced lines)
- \(C_1 = C_2 \)
- The balanced lines are driven by *common mode* or *differential mode* only

Characteristics:
- Propagation delay per-unit length:
 \[
 \tau_{\pm} = \sqrt{(L_1 \pm L_m)(C_1 \mp C_m)}
 \]
- Characteristic impedance
 \[
 Z_{0e} = \sqrt{\frac{L_1 + L_m}{C_1 - C_m}} = Z_l \sqrt{\frac{1+k_m}{1-k_c}}
 \]
 \[
 Z_{0o} = \sqrt{\frac{L_1 - L_m}{C_1 + C_m}} = Z_l \sqrt{\frac{1-k_m}{1+k_c}}
 \]

where
- \(k_m = \frac{L_m}{L_1} \): magnetic coupling coefficient
- \(k_c = \frac{C_m}{C_1} \): capacitive coupling coefficient
Symmetrical lines and symmetrical driven

\[Z_{0e}, \tau_+ \]

\[Z_{0o}, \tau_- \]

Figure 7.3 (a) Even and (b) odd modes of propagation of two symmetrical lines.
Symmetrical lines and symmetrical driven (Microstrip example)

The Characteristic Impedance Matrix

\[V_1 = Z_{11}I_1 + Z_{12}I_2 \]
\[V_2 = Z_{22}I_2 + Z_{21}I_1 \]

Example:
Characteristic Impedance Matrix [ohms]

1 2
1 49.6 6.4
2 6.4 49.6

Electric field: Odd mode
Electric field: Even mode
Magnetic field: Odd mode
Magnetic field: Even mode

FIGURE 3.10 Odd- and even-mode electric and magnetic field patterns for a simple two-conductor system.
Symmetrical lines and symmetrical driven (another definition for even and odd mode)

Definition of Odd and Even Mode Impedance

\[
\begin{align*}
V_{odd} &= \frac{1}{2} (V_1 - V_2) \\
Z_{odd} &= \left. \frac{V_{odd}}{I_1} \right|_{v_{even}=0} \\
Z_{odd} &= \left. \frac{V_{odd}}{I_1} \right|_{v_{odd}=0} \\
V_{even} &= \frac{1}{2} (V_1 + V_2) \\
Z_{even} &= \left. \frac{V_{even}}{I_1} \right|_{v_{even}=0} \\
Z_{even} &= \left. \frac{V_{even}}{I_1} \right|_{v_{odd}=0} \\
\end{align*}
\]

Note:
- \(Z_{odd}\) is the impedance one line sees when the pair is driven in odd mode.
- Differential impedance is the impedance difference signal sees: \(= 2 \times Z_{odd}\)

Coupling Factor \(= 20\log(Z_{12})\)

\[Z_{12} = \frac{Z_e - Z_o}{Z_e + Z_o}\]
Physical concept for the even-mode and odd mode impedance

Odd mode \(I_1 = -I_2 \) and \(V_1 = -V_2 \)

![Simplified circuit for determining the equivalent odd-mode inductance.](image1)

\[
L_{\text{odd}} = L_{11} - L_m = L_{11} - L_{12}
\]

\[
C_{\text{odd}} = C_{1g} + 2C_m = C_{11} + C_m
\]

\[
Z_{\text{odd}} = \sqrt{\frac{L_{\text{odd}}}{C_{\text{odd}}}} = \sqrt{\frac{L_{11} - L_{12}}{C_{11} + C_{12}}}
\]

\[
TD_{\text{odd}} = \sqrt{L_{\text{odd}}C_{\text{odd}}} = \sqrt{(L_{11} - L_{12})(C_{11} + C_{12})}
\]
Physical concept for the even-mode and odd mode impedance

Even mode \(I_1 = I_2 \) and \(V_1 = V_2 \)

\[
L_{\text{even}} = L_{11} + L_m
\]

\[
Z_{\text{even}} = \sqrt{\frac{L_{\text{even}}}{C_{\text{even}}}} = \sqrt{\frac{L_{11} + L_{12}}{C_{11} - C_{12}}}
\]

\[
TD_{\text{odd}} = \sqrt{L_{\text{even}}C_{\text{even}}} = \sqrt{(L_{11} + L_{12})(C_{11} - C_{12})}
\]

Odd mode \(k = \frac{L_m}{\sqrt{L_{11}L_{22}}} \)

\[
C_{\text{even}} = C_0 = C_{11} - C_m
\]

FIGURE 3.8 Simplified circuit for determining the equivalent odd-mode inductance.

FIGURE 3.9 Simplified circuit for determining the equivalent odd mode capacitance.
Impedance trends for the even- and odd-modes

What impedance behaviors do you see?

FIGURE 3.13 Variations in impedance as a function of spacing: (a) typical stripline two conductor system; (b) typical microstrip two-conductor system.
Impedance trends for the even- and odd-modes

1. High-impedance traces exhibit significantly more impedance variation than do the lower-impedance trace because the reference planes are much farther in relation to the signal spacing.

2. At smaller spacing, the single-line impedance is lower than the target. This is because the adjacent traces increase the self-capacitance of the trace and effectively lower its impedance even when they are not active.

3. Higher coupling the traces behave, the larger variation even- and odd- impedances will have.
Mutual coupling trends for the microstrip and stripline

Mutual parasitic fall off exponentially with trace-trace spacing

FIGURE 3.14 Mutual inductance and capacitance for (a) stripline in Figure 3.13a and (b) microstrip in Figure 3.13b.
Example by simulation:

Please compare the coupling characteristics for the three cases:

- Ze
- Zo

Figure 7.4 Coupling of microstrip line 1 with another line in either the 2B, 2D, or 2E position. Only two lines are present at any one time.
<table>
<thead>
<tr>
<th></th>
<th>B (roadside)</th>
<th>D (diagonal)</th>
<th>E (dge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L (nH/in.)</td>
<td>15.85 10.34</td>
<td>16.12 6.12</td>
<td>16.09 7.07</td>
</tr>
<tr>
<td></td>
<td>10.34 14.83</td>
<td>6.12 14.95</td>
<td>7.07 16.09</td>
</tr>
<tr>
<td>C (pF/in.)</td>
<td>3.28 -2.72</td>
<td>1.78 -0.81</td>
<td>1.75 -0.66</td>
</tr>
<tr>
<td></td>
<td>-2.72 4.25</td>
<td>-0.81 2.39</td>
<td>-0.66 1.75</td>
</tr>
<tr>
<td>k_m</td>
<td>0.67</td>
<td>0.39</td>
<td>0.44</td>
</tr>
<tr>
<td>k_c</td>
<td>0.73</td>
<td>0.39</td>
<td>0.38</td>
</tr>
<tr>
<td>K_b</td>
<td>0.35</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>K_f (ns/in.)</td>
<td>0.0064</td>
<td>-0.0002</td>
<td>-0.0053</td>
</tr>
<tr>
<td>Z_{oe} (Ω)</td>
<td>159.88</td>
<td>133.27</td>
<td>145.73</td>
</tr>
<tr>
<td>Z_{oo} (Ω)</td>
<td>27.65</td>
<td>56.42</td>
<td>61.28</td>
</tr>
<tr>
<td>Z_1 (Ω)</td>
<td>69.47</td>
<td>95.21</td>
<td>95.98</td>
</tr>
<tr>
<td>Z_2 (Ω)</td>
<td>59.08</td>
<td>79.05</td>
<td>95.98</td>
</tr>
<tr>
<td>T_1 (ps/in.)</td>
<td>228.16</td>
<td>169.36</td>
<td>167.67</td>
</tr>
<tr>
<td>T_2 (ps/in.)</td>
<td>250.99</td>
<td>189.16</td>
<td>167.67</td>
</tr>
</tbody>
</table>
Effect of switching patterns on transmission line

Crosstalk induced flight time and signal integrity variations

What phenomena do you see??

FIGURE 3.11 Effect of switching patterns on a three-conductor system.
Effect of switching patterns on transmission line

As the switching patterns are in **even-mode**:
- Over-driven behavior is seen (Overshooting).
- Longer propagation delay is seen.

As the switching patterns are in **odd-mode**:
- Under-driven behavior is seen (Undershooting).
- Shorter propagation delay is seen.

Why ??
Effect of switching patterns on transmission line

- Even-mode pattern: impedance changed from Z_0 to $Z_e > Z_0$. Overdriven when $Z_e > Z_s$. Slower propagation velocity.

- Odd-mode pattern: impedance changed from Z_0 to $Z_{odd} < Z_0$. Underdriven when $Z_{odd} < Z_s$. Faster propagation velocity.
Effect of switching patterns on transmission line

Simulating traces in a multiconductor system using a single-line equivalent model (SLEM)

Target trace is line 2. Please find the equivalent impedance and time delay

\[
Z_{2,\text{eff}} = \sqrt{\frac{L_{22} + L_{12} + L_{23}}{C_{22} - C_{12} - C_{23}}}
\]

\[
TD_{2,\text{eff}} = \sqrt{(L_{22} + L_{12} + L_{23})(C_{22} - C_{12} - C_{23})}
\]

FIGURE 3.12 Example switching pattern: (a) all bits switching in phase; (b) bits 1 and 2 switching in phase, bit 3 switching 180° out of phase.
Effect of switching patterns on transmission line

\[\text{TD}_{2,\text{eff}} = \sqrt{(L_{22} + L_{12} - L_{23})(C_{22} - C_{12} + C_{23})} \]

\[Z_{2,\text{eff}} = \sqrt{\frac{L_{22} + L_{12} - L_{23}}{C_{22} - C_{12} + C_{23}}} \]

\textbf{FIGURE 3.12} Example switching pattern: (a) all bits switching in phase; (b) bits 1 and 2 switching in phase, bit 3 switching 180° out of phase.
Example by TDR measurement:

Two Channel Differential TDR:
Differential or Common Driven

Driving differential signal

Driving common signal

Measuring Odd and Even Impedance of Tightly Coupled Lines

Measured Impedance of one trace, as the other is driven:
Odd mode impedance: differentially driven pair
Even mode impedance: commonly driven pair

For identical lines:

\[Z_{11} = \frac{Z_{\text{even}} + Z_{\text{odd}}}{2} \]
\[Z_{12} = \frac{Z_{\text{even}} - Z_{\text{odd}}}{2} \]

Extracted Characteristic Impedance matrix:

\[
\begin{pmatrix}
48.5 & 3.5 \\
3.5 & 48.5
\end{pmatrix}
\]
Example by TDR measurement: question one ??

Each line is a 50\(\Omega\) line, if driven single ended wrt the bottom plane

What impedance will a signal see?
Example by TDR measurement: question one??

Differential impedance (D.I.) is 150Ω without GND plane
And about 100Ω with GND plane. **Why??**
First half: two traces refer each other like a twisted line, $L \uparrow$ and $C \downarrow$

Second half: two traces refer the GND plane, mutual coupling is quite small ($k_m \approx k_c \approx 0$), so D.I. = $2*Z_{odd} \approx 2Z_0 = 100$
Example by TDR measurement: question two??

What’s the variation of the differential impedance For the differential pair crossing the slot?
Example by TDR measurement: question two??

The gap behaves like a high impedance discontinuity which will cause reflections.
Homogeneous Medium

Conditions:
• Real (not Quasi-) TEM mode propagating on the transmission lines

Characteristics:
• Propagation delay per-unit length:

\[\tau_+ = \tau_- = \tau_0 \sqrt{1 - k^2} \]

where \(k = k_m = k_c \) (Coupling coefficient)

\[k_m = \frac{L_m}{\sqrt{L_1 L_2}} \quad \text{: For mutual inductance coupling} \]

\[k_c = \frac{C_m}{\sqrt{C_1 C_2}} \quad \text{: For mutual capacitance coupling} \]
Symmetrical Lines on Homogeneous Medium

Conditions:

• $L_1 = L_2$ (balanced lines)
 $C_1 = C_2$
 • The balanced lines are driven by common mode or differential mode only
 •

 $\tau_+ = \tau_-$

Characteristics:

• Characteristic impedance

$$Z_{0e}Z_{0o} = Z_1^2$$

where

$$Z_1 = \sqrt{\frac{L_1}{C_1}}$$
Example: homogeneous coupled line

Please compare the coupling characteristics for the three cases:
1. K
2. Z_e
3. Z_o

Figure 7.5 Coupling of stripline 1 with another in either the $2B$, $2D$, or $2E$ position. Only two lines are present at any one time.
TABLE 7.3 COUPLING PARAMETERS WITH STRIPLINE 1 (LINE 2 IS IN B, BROADSIDE; D, DIAGONAL; OR E, EDGE POSITION.)

<table>
<thead>
<tr>
<th></th>
<th>B (roadside)</th>
<th>D (diagonal)</th>
<th>E (dge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L (nH/in.)</td>
<td>[13.02 8.08]</td>
<td>[13.23 4.00]</td>
<td>[13.18 4.33]</td>
</tr>
<tr>
<td></td>
<td>[8.08 13.02]</td>
<td>[4.00 13.23]</td>
<td>[4.33 13.18]</td>
</tr>
<tr>
<td>C (pF/in.)</td>
<td>[-4.48 -2.78]</td>
<td>[-2.99 -0.90]</td>
<td>[-3.05 -1.00]</td>
</tr>
<tr>
<td></td>
<td>[-2.78 4.48]</td>
<td>[-0.90 2.99]</td>
<td>[-1.00 3.05]</td>
</tr>
<tr>
<td>k</td>
<td>0.62</td>
<td>0.30</td>
<td>0.33</td>
</tr>
<tr>
<td>K_b</td>
<td>0.31</td>
<td>0.15</td>
<td>0.16</td>
</tr>
<tr>
<td>K_f (ns/in.)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Z_{oe} (Ω)</td>
<td>111.39</td>
<td>90.92</td>
<td>92.47</td>
</tr>
<tr>
<td>Z_{oo} (Ω)</td>
<td>26.10</td>
<td>48.72</td>
<td>46.78</td>
</tr>
<tr>
<td>Z_1 (Ω)</td>
<td>53.92</td>
<td>66.56</td>
<td>65.77</td>
</tr>
<tr>
<td>T_1 ps/in.</td>
<td>241.47</td>
<td>198.70</td>
<td>200.51</td>
</tr>
</tbody>
</table>
A Quiz:

Please compare their Z_e, Z_o, V_e, V_o, and C.

(a)

(b)
Symmetrical Lines and asymmetrically driven

Asymmetrical driven

\[V_+ = 0.5(V_1 + V_2) \]
\[V_- = 0.5(V_1 - V_2) \]

\(R_1 = R_2 = Z_{0e} \) (terminate even mode)

\[R_3 = \frac{2Z_{0e}Z_{0o}}{Z_{0e} - Z_{0o}} \] (terminate odd mode)

\((\therefore Z_{0o} = \left(R_1 / \frac{1}{2} R_3 \right)) \)

\(\Pi \)-Terminations:

Figure 7.7 The \(\pi \) network termination of asymmetrically driven lines (a), decomposed into even mode (b) and odd mode (c).
Symmetrical Lines and asymmetrically driven

\[R_1 = R_2 = Z_{0o} \] (terminate odd mode)

\[R_3 = \frac{1}{2} (Z_{0e} - Z_{0o}) \] (terminate even mode)

\[\therefore R_2 + 2R_3 = Z_{0e} \]

Figure 7.8 T-network termination of asymmetrically driven line (a), decomposed into even mode (b) and odd mode (c).

T-terminations
Imperfect Termination for Differential Transmission Line

1. What are their values of the resistance?
2. What are their advantages and disadvantages?
Imperfect Termination for Differential Transmission Line

Bridge Termination

AC Termination

Single ended termination
Imperfect Termination for Differential Transmission Line

Bridge:
1. Odd mode is completely absorbed
2. Even mode is completely reflected
3. Only one resistance is used.

Single-ended
1. Odd mode is completely absorbed
2. Even mode has the reflection coefficient \(T = (Z_o - Z_e)/(Z_o + Z_e) \)
3. The extra damping of the even mode costs an additional resistance.

AC
- Odd mode is completely absorbed
- Even mode is completely reflected at low frequency, but has the reflection \(T = (Z_o - Z_e)/(Z_o + Z_e) \) at high frequency.
3. Compared to bridge type, even mode is attenuated without increasing static power dissipation.
4. Needing three components.
Example: Termination for Differential Transmission Line

<table>
<thead>
<tr>
<th>Examples</th>
<th>BC Strip W/H = 0.7, S/H = 1.04, cr=4.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_{0 \text{ even}}$</td>
<td>76 ohms</td>
</tr>
<tr>
<td>Length</td>
<td>25 cm</td>
</tr>
</tbody>
</table>

DRIVER PARAMETERS

- **Driver**: Ideal voltage source
- **R_S**: 0 ohms

- **Risetime**: 1000 ps
- **Phase**: 0 ps
- **Step**: 3 V
- **Common Mode Voltage**: 0 V

TERMINATION

- **Auto-terminate**
- R_1: 1 MΩ
- R_2: 1 MΩ
- R_3: 112 ohms
- C_1: 100 pF
Example: Termination for Differential Transmission Line

A simple bridge termination
Example: Termination for Differential Transmission Line

A simple bridge termination, but Unbalance driving

Differential signal is still good

Common signal on each line is oscillating
Example: Termination for Differential Transmission Line

A Pi-termination for unbalance driving

TRANSMISSION LINE PARAMETERS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_{0,\text{eva}}$</td>
<td>76 ohms</td>
</tr>
<tr>
<td>$Z_{0,\text{edd}}$</td>
<td>56 ohms</td>
</tr>
<tr>
<td>L</td>
<td>25 cm</td>
</tr>
</tbody>
</table>

DRIVER PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver</td>
<td>Ideal voltage source</td>
</tr>
<tr>
<td>R_8</td>
<td>0 ohms</td>
</tr>
<tr>
<td>Rise time</td>
<td>1000 ps</td>
</tr>
<tr>
<td>Step</td>
<td>3</td>
</tr>
</tbody>
</table>

TERMINATION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>76 ohms</td>
</tr>
<tr>
<td>R_2</td>
<td>76 ohms</td>
</tr>
<tr>
<td>R_3</td>
<td>425 ohms</td>
</tr>
<tr>
<td>C_1</td>
<td>100 pF</td>
</tr>
</tbody>
</table>

Common-mode is damped
Example: Termination for Differential Transmission Line

Common-mode resonance
Differential pair excited by common-mode signal
Example: Termination for Differential Transmission Line

Single-ended termination for Unbalanced driving

Better than bridge termination
Example: Termination for Differential Transmission Line

AC T-termination for Unbalanced driving

TRANSMISSION LINE PARAMETERS

Example:
BC Strip \(WH = 0.7, SH = 1.04, ex=4.4 \)

\[
Z_{0 \text{ even}} = 76 \text{ ohms}, \quad Z_{0 \text{ odd}} = 66 \text{ ohms}, \quad Z_{0 \text{ eff even}} = 3.45, \quad Z_{0 \text{ eff odd}} = 2.94
\]

Length = 25 cm

DRIVER PARAMETERS

Driver:
Ideal voltage source

\(R_S = 0 \text{ ohms} \)

- Only for ideal voltage source driver -

Risetime = 1000 ps,
Phase = 750 ps

Step + = 3 V,
Step - = 2.7 V

Common Mode Voltage = 0.5 V

TERMINATION
Auto-terminate

\[
R_1 = 56 \text{ ohms}, \quad R_2 = 56 \text{ ohms}, \quad R_3 = 0 \text{ ohms}, \quad C_1 = 100 \text{ pF}
\]
Example: Termination for Differential Transmission Line

Bridge termination at the far end and **Series termination** at the near end

Diagram

- **VIN**
- **VNE**
- **VFE**
- **R1**
- **R2**
- **R3**

Table: Parameters

<table>
<thead>
<tr>
<th>Example</th>
<th>BC: Step W/H</th>
<th>0.7, SW/H</th>
<th>1.04, t<sub>r</sub> = 4.4 ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z<sub>0</sub> even</td>
<td>76 ohms</td>
<td>3.45 ohms</td>
<td></td>
</tr>
<tr>
<td>Z<sub>0</sub> odd</td>
<td>56 ohms</td>
<td>2.54 ohms</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>25 cm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Driver Parameters

- **Driver**: Ideal voltage source
- **R₃**: 76 ohms

Termination

- **Auto-terminate**

Notes

1. **Power saving**
2. **Idea of LVDS**
Example: Termination for Differential Transmission Line

Bridge termination at the far end and **Series termination** at the near end
For LVDS case
Example: Effects of Termination Networks on Signal-Induced EMI from the Shields of Fibre Channel Cables Operating in the Gb/s Regime

2000 IEEE EMC Symposium
Example: Effects of Termination Networks on Signal-Induced EMI from the Shields of Fibre Channel Cables Operating in the Gb/s Regime

Measurement of S_{11} for both differential mode and common mode

Termination effect is reduced for high frequency range

Figure 8: Differential-mode reflection coefficients of three termination networks as measured through a six inch cable assembly.

Figure 9: Common-mode reflection coefficients of three termination networks as measured through a six inch cable assembly.
Example: Effects of Termination Networks on Signal-Induced EMI from the Shields of Fibre Channel Cables Operating in the Gb/s Regime

Why the termination effect is degraded at high frequency range?

Figure 10: Electric field magnitude from a 1 meter length cable terminated in three different termination networks. E-field measured at a 3 meter distance.
Quantitative description of crosstalk

If the coupled lines are symmetrical

\[
K_f = -\frac{1}{2}\left(\frac{L_m}{Z_1} - C_m Z_1 \right) \quad \text{(ns/cm)}: \text{Forward coupling coefficient}
\]

\[
K_b = \frac{1}{4\tau}\left(\frac{L_m}{Z_1} + C_m Z_1 \right) \quad \text{(dimensionless)}: \text{Backward coupling coefficient}
\]

\[
V_f(x,t) = K_f x \frac{d}{dt} V_{in}(t - \tau x)
\]

\[
V_b(x,t) = K_b [V_{in}(t - \tau x) - V_{in}(t + \tau x - 2T_d)]
\]

(see appendix 7.1)
Quantitative description of crosstalk

In the loosely coupled system \((k_m, k_c << 1)\)

\[
Z_1 = \sqrt{\frac{L_1}{C_1}} \quad \text{and} \quad \tau = \sqrt{L_1C_1} \quad \text{is accurate enough}
\]

\[
\therefore K_f = -\frac{\tau}{2} \left(\frac{L_m}{\tau Z_1} - \frac{C_m Z_1}{\tau} \right) = -\frac{\tau}{2} (k_m - k_c)
\]

\[
K_b = \frac{1}{4\tau} \left(\frac{L_m}{Z_1} + C_m Z_1 \right) = \frac{1}{4} (k_m + k_c)
\]

1. It is clear that the backward coupling can be reduced by decreasing the mutual coupling \((L_m \text{ and } C_m)\) or by increasing the coupling to ground\((L_1, L_2, C_1, \text{ and } C_2)\).
2. The forward crosstalk is zero for two identical lines in homogeneous medium. (not easy in practical circuits)
Crosstalk for a ramp step driver

\[V_{in}(t) = V_m \left[f(t) - f(t - T_r) \right] \]

Figure 7.11 The ramp step driver signal can be expressed as the difference between \(f(t) \) and \(f(t - T_r) \).
Crosstalk for a ramp step driver

Forward crosstalk at the far end:

\[
V_f (l,t) = K_f l \frac{d}{dt} V_{in} (t - T_d) \\
= K_f l \frac{V_m}{T_r}, \quad T_d < t < T_d + T_r \\
= 0 \quad \text{elsewhere}
\]

Backward crosstalk at the near end

- If \(T_r < 2T_d \)
 \[
 V_b (0,t) = K_b [V_{in} (t) - V_{in} (t - 2T_d)]
 \\
 V_{b,\text{max}} \propto K_b
 \\
- If \(T_r > 2T_d \)
 \[
 V_{b,\text{max}} = 2(\tau \frac{d}{T_r}) K_b V_m \propto \frac{K_b}{T_r}
 \]

Figure 7.12 Waveform of backward crosstalk in response to a ramp step driver for (a) a typical case \((2T_d > T_r)\) and (b) a short line \((2T_d < T_r)\).
SPICE simulation of crosstalk

Figure 7.13 Circuit of two edge-coupled lines, plus a subcircuit for 0.1 inch.

Figure 7.14 SPICE-simulated crosstalk waveforms at (from top to bottom) the driver D, near end N, and far end F.
Measurement of coupling coefficient (Frequency domain): (example) RAMBUS RIMM Connector

- Test module design
Measurement of coupling coefficient (Frequency domain) : RAMBUS RIMM Connector

- Calibration (Open, short, load)

Figure A-8: Open Calibration

Figure A-9: Short Calibration

Figure A-10: Matched 50 Ohm Load Calibration
Measurement of coupling coefficient (Frequency domain)
: (example) RAMBUS RIMM Connector

- Theory (mutual capacitance)

\[S_{12} \sim 2 \frac{Z_0 j \omega C_{12}}{1 + 2Z_0 j \omega C_{12}} \]

\[\sim 2 Z_0 j \omega C_{12}. \]

The slope of \(S_{21}(f) \) at low frequency is taking to compute the \(C_m \)

\[C_m = 1.59 \times 10^{-3} \frac{|S_{12}|}{f} \]
Measurement of coupling coefficient (Frequency domain) : (example) RAMBUS RIMM Connector

- Theory (mutual inductance)

\[
S_{12} \sim 2 \quad 12 \frac{L \cdot j \cdot \omega}{(Z_0 + j \cdot \omega \cdot L)} \\
\sim 2 \quad 12 \frac{L \cdot j \cdot \omega}{Z_0},
\]

\[m = 3.98 \left| S_{12} \right| / (f \times L)\]

The slope of \(S_{21}(f) \) at low frequency is taking to compute the \(L_m \)
Measurement of coupling coefficient (Frequency domain): (example) RAMBUS RIMM Connector

- Measurement setup
Differential Impedance Measurement by TDR/TDT

They have good EMS (Immunity) and EMI (Interference) Performance.
Differential Impedance Measurement by TDR/TDT

Equivalent circuits of the differential interconnects: (Type I)

\[C = \begin{bmatrix} C_{\text{tot}} & -C_m \\ -C_m & C_{\text{tot}} \end{bmatrix}, \quad L = \begin{bmatrix} L_{\text{self}} & L_m \\ L_m & L_{\text{self}} \end{bmatrix} \]

Figure 2. An electrically short section of a differential transmission line pair.
Differential Impedance Measurement by TDR/TDT

Equivalent circuits of the differential interconnects: (Type II)

- $Z_{odd} = \sqrt{\frac{L_{self} - L_m}{C_{tot} + C_m}}$
- $Z_{even} = \sqrt{\frac{L_{self} + L_m}{C_{tot} - C_m}}$
- $t_{odd} = \sqrt{(L_{self} - L_m)(C_{tot} + C_m)}$
- $t_{even} = \sqrt{(L_{self} + L_m)(C_{tot} - C_m)}$

Figure 4. Differential pair model based on the even and odd impedance and delay values

Advantage is it is a rigorous equivalent circuit.
Disadvantage is only valid in three conductor interconnects.
Differential Impedance Measurement by TDR/TDT

Equivalent circuits of the differential interconnects: (Type III)

\[Z_{\text{mutual}} = \frac{2 \cdot Z_{\text{odd}} \cdot Z_{\text{even}}}{Z_{\text{even}} - Z_{\text{odd}}} \]

\[Z = Z_{\text{even}} \]

\[t_{\text{odd}} = t_{\text{even}} \]

Figure 5. Simplified differential transmission line model
Differential Impedance Measurement by TDR/TDT

Measurement Principle

Figure 3. Even and odd mode impedance profiles displayed in the IConnect software waveform viewer. Both even and odd mode impedances and delays are clearly different.

Figure 6. Differential TDR measurement setup
Differential Impedance Measurement by TDR/TDT

Comparison of the equivalent model by the SPICE

Figure 8. Verifying the differential line model in IConnect software. Simulations with both even and odd mode stimuli are performed using an integrated interface to a SPICE simulator and the simulation results are compared to the measurement data.
A Final Question:

Can you explain why

\[
Z_{\text{differential}} = 2 \cdot Z_{\text{odd}}
\]

\[
Z_{\text{common}} = \frac{Z_{\text{even}}}{2}
\]
How to reduce crosstalk noise

- Space out signal routing
- Route-void channels adjacent to critical nets
- Increase coupling to ground
- Run orthogonal rather than parallel
- Provide the homogeneous medium
- Using the slowest risetime and falling time
§10.1 Three conductor lines and crosstalk

Time Domain Crosstalk VS Frequency-domain Crosstalk

a. Two conductors transmission lines has no crosstalk problem. In order to have crosstalk, we need to have three or more conductors.

b.
c. The generator circuit consists of the generator conductor and reference conductor and has current $I_G(z,t)$ along the conductors and voltage $V_G(z,t)$ between them. The I_G and V_G will generate EM fields and interact with the receptor circuit.

d. The objective in a crosstalk analysis is to determine the near-end voltage $V_{NE}(t)$ and far-end voltage $V_{FE}(t)$ given the cross-sectional dimension and the termination characteristics $V_S(t)$, R_S, R_L, R_{NE}, R_{FE}.
e. Two type of crosstalk analysis

(1) Time-domain crosstalk:

\[\text{predict } V_{FE}(t) \text{ and } V_{NE}(t) \text{ given } V_S(t). \]

(2) Frequency-domain crosstalk:

\[\text{predict } \hat{V}_{FE}(jw) \text{ and } \hat{V}_{NE}(jw) \text{ given } V_S(t) = V_S \cos(wt + \phi). \]

f. (1) For simplicity, we will assume that the medium surrounding the conductors for these configurations is homogeneous.

(2) Closed-form expressions for the per-unit-length parameters for the lines in inhomogeneous medium, such as microstrip lines, are difficult to determine.
Transmission Line Equations

a. Assume only TEM mode present on the materials, so line voltages \(V_G(z,t) \) and \(V_R(z,t) \), as well as line currents \(I_G(z,t) \) and \(I_R(z,t) \) can be uniquely defined.

b. Equivalent circuit of TEM-mode on 3-conductor material:

\[
I_G(z, t) \quad \begin{array}{c}
R_G \Delta z \\
L_G \Delta z \\
R_R \Delta z \\
R_O \Delta z
\end{array} \quad I_G(z + \Delta z) \\
I_R(z, t) \quad \begin{array}{c}
G_m \Delta z \\
C_m \Delta z \\
G_R \Delta z \\
C_R \Delta z
\end{array} \quad I_R(z + \Delta z) \\
I_G(z, t) + I_R(z, t) \quad \begin{array}{c}
G_m \Delta z \\
C_m \Delta z \\
G_R \Delta z \\
C_R \Delta z
\end{array} \quad V_G(z + \Delta z) \\
V_R(z + \Delta z)
\]
\[
\begin{align*}
\frac{\partial V_G(z,t)}{\partial z} &= -(R_G + R_O)I_G(z,t) - R_O I_R(z,t) - L_G \frac{\partial I_G(z,t)}{\partial t} - L_m \frac{\partial I_R(z,t)}{\partial t} \\
\frac{\partial V_R(z,t)}{\partial z} &= -R_O I_G(z,t) - (R_R + R_O)I_R(z,t) - L_m \frac{\partial I_G(z,t)}{\partial t} - L_R \frac{\partial I_R(z,t)}{\partial t} \\
\frac{\partial I_G(z,t)}{\partial z} &= -(G_G + G_m)V_G(z,t) + G_m V_R(z,t) - (C_G + C_m) \frac{\partial V_G(z,t)}{\partial t} + C_m \frac{\partial V_R(z,t)}{\partial t} \\
\frac{\partial I_R(z,t)}{\partial z} &= G_m V_G(z,t) - (G_R + G_m)V_R(z,t) + C_m \frac{\partial V_G(z,t)}{\partial t} - (C_R + C_m) \frac{\partial V_R(z,t)}{\partial t}
\end{align*}
\]

In matrix terms:

\[
\begin{align*}
\Rightarrow \frac{\partial [V(z,t)]}{\partial z} &= -RI(z,t) - L \frac{\partial I(z,t)}{\partial t} \\
\Rightarrow \frac{\partial [I(z,t)]}{\partial z} &= -GV(z,t) - C \frac{\partial V(z,t)}{\partial t}
\end{align*}
\]
where

\[
\begin{align*}
V(z,t) &= \begin{bmatrix} V_G(z,t) \\ V_R(z,t) \end{bmatrix}, I(z,t) = \begin{bmatrix} I_G(z,t) \\ I_R(z,t) \end{bmatrix}, R = \begin{bmatrix} R_G + R_O & R_O \\ R_O & R_R + R_O \end{bmatrix} \\
L &= \begin{bmatrix} L_G & L_m \\ L_m & L_R \end{bmatrix}, G = \begin{bmatrix} G_G + G_m & G_m \\ -G_m & G_R + G_m \end{bmatrix}, C = \begin{bmatrix} C_G + C_m & -C_m \\ -C_m & C_R + C_m \end{bmatrix}
\end{align*}
\]

(1) In time domain, it is a difficult problem. When \(R = G = 0 \) (lossless lines), there are exact solutions in \textit{SPICE}.

(2) In frequency domain, the exact solutions for above material equations are possible, we will show the exact solution for lossless case.
Note: In frequency domain, the equations =>

\[
\begin{aligned}
\frac{d\hat{V}(z)}{dz} &= -\hat{Z}\hat{I}(z) \\
\frac{d\hat{I}(z)}{dz} &= -\hat{Y}\hat{V}(z)
\end{aligned}
\]

where

\[
\begin{aligned}
\hat{Z} &= R + jwL \\
\hat{Y} &= G + jwC
\end{aligned}
\]

\[
\begin{aligned}
V(z,t) &= \text{Re}\{\hat{V}(z)e^{jwt}\} \\
I(z,t) &= \text{Re}\{\hat{I}(z)e^{jwt}\}
\end{aligned}
\]
§ 10.3.1 The per-unit-length parameters

Internal parameters: R_G, R_R, R_O and internal inductance are not dependent on the line configurations.

a. For material in homogeneous medium (μ, ε)

$$LC = CL = \mu \varepsilon 1 \Rightarrow C = \mu \varepsilon \frac{1}{v^2} L^{-1}$$

Example: Three-conductor line

$$\begin{bmatrix} C_G + C_m & -C_m \\ -C_m & C_R + C_m \end{bmatrix} = \frac{1}{v^2 (L_G L_R - L_m^2)} \begin{bmatrix} L_R & -L_m \\ -L_m & L_G \end{bmatrix}$$

$$C_m = \frac{L_m}{v^2 (L_G L_R - L_m^2)}$$

$$\Rightarrow \begin{cases} C_G + C_m = \frac{L_R}{v^2 (L_G L_R - L_m^2)} \\ C_R + C_m = \frac{L_G}{v^2 (L_G L_R - L_m^2)} \end{cases}$$

$$LG = GL = \mu \sigma 1 \Rightarrow G = \mu \sigma L^{-1}$$
Wide-Separation Approximation for Wires

a. (1) Magnetic flux of a current-carrying wire through a surface
(2) voltage between two points for a charge-carrying wire

\[\phi = \frac{\mu_0 I}{2\pi} \ln \left(\frac{R_2}{R_1} \right) \]

\[V_{ba} = \frac{q}{2\pi \varepsilon_0} \ln \left(\frac{R_2}{R_1} \right) \]
b. Parameters of three-conductor transmission lines

(1) Inductance:

\[
\phi = LI \Rightarrow \begin{bmatrix} \phi_G \\ \phi_R \end{bmatrix} = \begin{bmatrix} L_G & L_m \\ L_m & L_R \end{bmatrix} \begin{bmatrix} I_G \\ I_R \end{bmatrix}
\]

\[
L_G = \left. \frac{\phi_G}{I_G} \right|_{I_R = 0}, \quad L_R = \left. \frac{\phi_R}{I_R} \right|_{I_G = 0}
\]

\[
L_m = \left. \frac{\phi_G}{I_R} \right|_{I_G = 0} = \left. \frac{\phi_R}{I_G} \right|_{I_R = 0}
\]
1. generator \(r_{WG} \) \(d_{GR} \) receptor \(r_{WR} \)

\[GND \]

\(r_{WO} \)

2. Self inductance

\[I_G \]

\(r_{WG} \)

\(d_G \)

\(\varphi_G \)

\(-I_G \)

\[I_G \]

\(r_{WO} \)

\(d_R \)

\[L_G = \frac{\mu_0}{2\pi} \ln \left(\frac{d_G}{r_{WG}} \right) + \frac{\mu_0}{2\pi} \ln \left(\frac{d_G}{r_{WO}} \right) = \frac{\mu_0}{2\pi} \ln \left(\frac{d_G^2}{r_{WG}r_{WO}} \right) \]

\[L_R = \frac{\mu_0}{2\pi} \ln \left(\frac{d_R^2}{r_{WR}r_{WO}} \right) \]
3. Mutual inductance

\[L_m = \frac{\mu_0}{2\pi} \ln\left(\frac{d_G}{d_{GR}}\right) + \frac{\mu_0}{2\pi} \ln\left(\frac{d_R}{r_{WO}}\right) \]

\[= \frac{\mu_0}{2\pi} \ln\left(\frac{d_G d_R}{d_{GR} r_{WO}}\right) \]

(2) Capacitance

\[q = CV = \begin{bmatrix} C_G & -C_m \\ -C_m & C_R + C_m \end{bmatrix} \begin{bmatrix} V_G \\ V_R \end{bmatrix} \]

\[V = C^{-1}q = pq = \begin{bmatrix} p_G & p_m \\ p_m & p_R \end{bmatrix} \begin{bmatrix} q_G \\ q_R \end{bmatrix} \]
\[\therefore P_G = \frac{V_G}{q_G}_{q_R=0}, \quad P_R = \frac{V_R}{q_R}_{q_R=0}, \quad P_m = \frac{V_R}{q_G}_{q_R=0} = \frac{V_G}{q_R}_{q_G=0} \]

1. Self capacitance

\[P_G = \frac{1}{2\pi\varepsilon_0} \ln \left(\frac{d_G}{r_{WG}} \right) + \frac{1}{2\pi\varepsilon_0} \ln \left(\frac{d_G}{r_{WO}} \right) \]

\[= \frac{1}{2\pi\varepsilon_0} \ln \left(\frac{d_G^2}{r_{WG}r_{WO}} \right) \]
2. Mutual capacitance

\[P_m = \frac{1}{2\pi\varepsilon_0} \ln \left(\frac{d_G}{d_{GR}} \right) + \frac{1}{2\pi\varepsilon_0} \ln \left(\frac{d_R}{r_{WO}} \right) \]

\[= \frac{1}{2\pi\varepsilon_0} \ln \left(\frac{d_G d_R}{d_{GR} r_{WO}} \right) \]
c. Example

\[L_G = \left. \frac{\varphi_G}{I_G} \right|_{I_R = 0} \]

\[= \frac{\mu_0}{2\pi} \ln \left(\frac{h_G}{r_{WG}} \right) + \frac{\mu_0}{2\pi} \ln \left(\frac{2h_G}{h_G} \right) \]

\[= \frac{\mu_0}{2\pi} \ln \left(\frac{2h_G}{r_{WG}} \right) \]

\[L_m = \left. \frac{\varphi_R}{I_G} \right|_{I_R = 0} \]

\[= \frac{\mu_0}{2\pi} \ln \left(\frac{S_1}{S} \right) + \frac{\mu_0}{2\pi} \ln \left(\frac{S_2}{S_3} \right); (S_1 = S_3) \]

\[= \frac{\mu_0}{2\pi} \ln \left(\frac{S_2}{S} \right) = \frac{\mu_0}{4\pi} \ln \left(1 + 4 \frac{h_G h_R}{S^2} \right) \]
§10.1.4 Frequency-Domain (Steady State) Crosstalk

§ General Solution:

a. \[
\frac{d\hat{V}(z)}{dz} = -\hat{Z}\hat{I}(z) \quad \hat{V}(z) = \begin{bmatrix} \hat{V}_G(z) \\ \hat{V}_R(z) \end{bmatrix}, \quad \hat{I}(z) = \begin{bmatrix} \hat{I}_G(z) \\ \hat{I}_R(z) \end{bmatrix}
\]

b. \[
\frac{d\hat{I}(z)}{dz} = -\hat{Y}\hat{V}(z)
\]

where \(\hat{Z} = R + jwL \), \(\hat{Y} = G + jwC \)

\[
\frac{d^2\hat{V}(z)}{dz^2} = ZYV(z)
\]
\[
\frac{d^2\hat{I}(z)}{dz^2} = YZI(z)
\]

Note: in general, \(ZY \neq YZ \)
(1) if we can find a transformation matrix \hat{T} such that:

$$\hat{T}^{-1} \hat{Y} \hat{Z} \hat{T} = \hat{r}^2 = \begin{bmatrix} \hat{r}_G^2 & 0 \\ 0 & \hat{r}_R^2 \end{bmatrix} \leftarrow \text{diagonalized}$$

where \hat{T} is the eigenvectors of $\hat{Y} \hat{Z}$

\hat{r} is the eigenvalues of $\hat{Y} \hat{Z}$

(2) $$\frac{d^2}{dz^2} \hat{T}^{-1} \hat{I}(z) = \hat{T}^{-1} \hat{Y} \hat{Z} \hat{I}(z)$$

let $\hat{T}^{-1} \hat{I}(z) = \hat{I}_m(z) \leftarrow$ modal current = $$\begin{bmatrix} \hat{I}_{mG}(z) \\ \hat{I}_{mR}(z) \end{bmatrix}$$

$$\Rightarrow \frac{d^2}{dz^2} \hat{I}_m(z) = \hat{T}^{-1} \hat{Y} \hat{Z} \hat{T} \hat{I}_m(z)$$

$$= \begin{bmatrix} \hat{r}_G^2 & 0 \\ 0 & \hat{r}_R^2 \end{bmatrix} \begin{bmatrix} \hat{I}_{mG}(z) \\ \hat{I}_{mR}(z) \end{bmatrix}$$

$$\begin{cases} \hat{I}''_{mG}(z) = \hat{r}_G^2 \hat{I}_{mG}(z) \\ \hat{I}''_{mR}(z) = \hat{r}_R^2 \hat{I}_{mR}(z) \end{cases} \Rightarrow \begin{cases} \hat{I}_{mG}(z) = e^{-\hat{r}_Gz} \hat{I}_{mG}(z)^+ - e^{\hat{r}_Gz} \hat{I}_{mG}(z)^- \\ \hat{I}_{mR}(z) = e^{-\hat{r}_Rz} \hat{I}_{mR}(z)^+ - e^{\hat{r}_Rz} \hat{I}_{mR}(z)^- \end{cases}$$
\(\hat{I}_m(z) = e^{-\hat{r}_z} \hat{I}_m^+ - e^{\hat{r}_z} \hat{I}_m^- \) \text{ in matrix form.}

\[\begin{bmatrix} e^{\pm \hat{r}_G z} & 0 \\ 0 & e^{\pm \hat{r}_G z} \end{bmatrix}, \quad \hat{I}_m^\pm = \begin{bmatrix} \hat{I}_{mG}^\pm \\ \hat{I}_{mR}^\pm \end{bmatrix} \]

\[\hat{I}(z) = \hat{T}\hat{I}_m(z) = \hat{T}(e^{-r_z \hat{I}_m^+} - e^{r_z \hat{I}_m^-}) \]

\[\hat{V}(z) = -\hat{Y}^{-1} \frac{d}{dz} \hat{I}(z) = \hat{Y}^{-1} \hat{T}\hat{r}(e^{-\hat{r}_z \hat{I}_m^+} + e^{\hat{r}_z \hat{I}_m^-}) \]

by \(\hat{T}^{-1} \hat{Y} \hat{Z} \hat{T} = \hat{r}^2 \Rightarrow \hat{Z} \hat{T} \hat{r}^{-1} = \hat{Y}^{-1} \hat{T}\hat{r} \)

\[\hat{V}(z) = (\hat{Z} \hat{T} \hat{r}^{-1} \hat{T}^{-1}) \hat{T}(e^{-\hat{r}_z \hat{I}_m^+} + e^{\hat{r}_z \hat{I}_m^-}) \]

\[\hat{Z}_c = \hat{Z}(\hat{T} \hat{r}^{-1} \hat{T}^{-1}) = \hat{Z}(\sqrt{\hat{Y} \hat{Z}})^{-1} = \hat{Y}^{-1} \sqrt{\hat{Y} \hat{Z}} \] \text{ see below for detail}
上式的 \((\hat{T}^{-1}\hat{T}^{-1}) = \left(\sqrt{\hat{Y}\hat{Z}}\right)^{-1}\)

\[\therefore \hat{T}^{-1}\hat{Y}\hat{Z}\hat{T} = \hat{r}^2 \Rightarrow \hat{r}^{-1}\hat{T}^{-1}\hat{Y}\hat{Z}\hat{T}^{-1} = 1\]

\[\Rightarrow (\hat{T}^{-1}\hat{T}^{-1})\hat{Y}\hat{Z}(\hat{T}^{-1}\hat{T}^{-1}) = 1\]

\[\Rightarrow \hat{Y}\hat{Z} = (\hat{T}^{-1}\hat{T}^{-1})^{-2}\]

\[\Rightarrow \hat{T}^{-1}\hat{T}^{-1} = \left(\sqrt{\hat{Y}\hat{Z}}\right)^{-1}\]

similar to the scalar results

\[\hat{Z} = \sqrt{\frac{\hat{\gamma}}{\hat{y}}} = \hat{Z}(\sqrt{\hat{Y}\hat{Z}})^{-1}\]

e. Solving the four unknowns \(I_{m^+}\) and \(I_{m^-}\) by the termination condition

\[\left\{\begin{aligned}
V(0) &= V_S - Z_S I(0) \\
V(L) &= Z_L I(L)
\end{aligned}\right.\]

where \(V_S = \begin{bmatrix} V_S \\ 0 \end{bmatrix}\), \(Z_S = \begin{bmatrix} R_S & 0 \\ 0 & R_{NE} \end{bmatrix}\), \(Z_L = \begin{bmatrix} R_L & 0 \\ 0 & R_{FE} \end{bmatrix}\)
(2): at \(z = 0 \)
\[
\hat{V}(0) = \hat{Z}_C \hat{T}(\hat{I}_m^+ + \hat{I}_m^-)
\]
\[
\hat{I}(0) = \hat{T}(\hat{I}_m^+ - \hat{I}_m^-)
\]
\[\therefore \hat{Z}_C \hat{T}(\hat{I}_m^+ + \hat{I}_m^-) = \hat{V}_s - \hat{Z}_S \hat{T}(\hat{I}_m^+ - \hat{I}_m^-)\]

\[\therefore at \ z = L\]
\[
\hat{V}(L) = \hat{Z}_C \hat{T}(e^{-iL}\hat{I}_m^+ + e^{iL}\hat{I}_m^-)
\]
\[
\hat{I}(L) = \hat{T}(e^{-iL}\hat{I}_m^+ - e^{iL}\hat{I}_m^-)
\]
\[\therefore \hat{Z}_C \hat{T}(e^{-iL}\hat{I}_m^+ + e^{iL}\hat{I}_m^-) = \hat{Z}_L \hat{T}(e^{-iL}\hat{I}_m^+ - e^{iL}\hat{I}_m^-)\]
\[
\Rightarrow \begin{bmatrix} (\hat{Z}_C + \hat{Z}_S) \hat{T} & (\hat{Z}_C - \hat{Z}_S) \hat{T} \\ (\hat{Z}_C - \hat{Z}_L) \hat{T} e^{-iL} & (\hat{Z}_C + \hat{Z}_L) \hat{T} e^{iL} \end{bmatrix} \begin{bmatrix} \hat{I}_m^+ \\ \hat{I}_m^- \end{bmatrix} = \begin{bmatrix} \hat{V}_s \\ 0 \end{bmatrix}
\]
\[
\rightarrow \hat{I}_m^+, \hat{I}_m^-, \hat{I}_m^+ and \hat{I}_m^- can be solved.\]
§ Exact Solution for Lossless Lines in Homogeneous Media

a. for lossless line:

\[R = G = 0 \text{ and } \hat{Z} = jwL, \hat{Y} = jwC \]

\[\therefore \hat{Y}\hat{Z} = -w^2LC = -w^2\mu\varepsilon I = -\beta^2 I \leftarrow \text{diagonal matrix} \]

where \(LC = \mu\varepsilon I \) for homogeneous transmission lines.

\[\therefore \hat{T} = 1, \hat{r} = j\beta I = j\frac{w}{v} I \]

b. It can be shown that:

\[
\hat{V}_R(0) = \hat{V}_{NE} = \left[\frac{S}{D_{en}} \right] \frac{R_{NE}}{R_{NE} + R_{FE}} jwL_mL \left(C + \frac{j2\pi L}{\sqrt{1-k^2}} \alpha_{LG} S \right) \hat{I}_{GDC}
\]

\[
+ \frac{R_{NE}R_{FE}}{R_{NE} + R_{FE}} jwC_mL \left(C + \frac{j2\pi L}{\sqrt{1-k^2}} \frac{1}{\alpha_{LG}} S \right) \hat{V}_{GDC}
\]

\[
\hat{V}_R(L) = \hat{V}_{FE} = \frac{S}{D_{en}} \left[-\frac{R_{FE}}{R_{NE} + R_{FE}} jwL_mLL\hat{I}_{GDC} + \frac{R_{NE}R_{FE}}{R_{NE} + R_{FE}} jwC_mL\hat{V}_{GDC} \right]
\]
where:

\[D_{en} = C^2 - S^2 w^2 \tau_G \tau_R \left[1 - k^2 \left(\frac{1 - \alpha_{SG} \alpha_{LR}}{1 + \alpha_{SR} \alpha_{LR}} \right) \frac{1 - \alpha_{LG} \alpha_{SR}}{1 + \alpha_{SG} \alpha_{LG}} \right] + jwCS (\tau_G + \tau_R) \]

\[C = \cos(\beta L), \quad S = \frac{\sin(\beta L)}{\beta L} \]

\[k (\text{coupling coefficient}) = \frac{L_m}{\sqrt{L_G L_R}} = \frac{C_m}{\sqrt{(C_G + C_m)(C_R + C_m)}}, \quad k \leq 1 \]

\[\tau_G (\text{time constant}) = \frac{L_G L}{R_S + R_L} + \left(C_G + C_m \right) L \frac{R_S R_L}{R_S + R_L} \]

\[\tau_R (\text{time constant}) = \frac{L_R L}{R_{NE} + R_{FE}} + \left(C_R + C_m \right) L \frac{R_{NE} R_{FE}}{R_{NE} + R_{FE}} \]
\[\hat{V}_{GDC} = \frac{R_L}{R_S + R_L} \hat{V}_S, \quad \hat{I}_{GDC} = \frac{\hat{V}_S}{R_S + R_L} \]

\[\hat{Z}_{CG} = \sqrt{\frac{L_G}{C_G + C_m}} = \nu L_G \sqrt{1 - k^2} \]

\[\hat{Z}_{CR} = \sqrt{\frac{L_R}{C_R + C_m}} = \nu L_R \sqrt{1 - k^2} \]

\[\alpha_{SG} = \frac{R_S}{Z_{CG}}, \quad \alpha_{LG} = \frac{R_L}{Z_{CG}}, \quad \alpha_{SR} = \frac{R_{NE}}{Z_{CR}}, \quad \alpha_{LR} = \frac{R_{FE}}{Z_{CR}} \]

If \(\alpha < 1 \Rightarrow \) low impedance load.

If \(\alpha > 1 \Rightarrow \) high impedance load.

\[\leftarrow \text{DC excitation at generator circuit} \]

Characteristic impedances of each circuit in the presence of the other circuit.
§ Inductive and Capacitive coupling

a. Two reasonable assumptions

(1) The line is electrically short. i.e. \(L \ll \lambda \)

\[C = \cos(\beta L) \approx 1, \quad \zeta \approx 1 \]

(2) The generator and receptor circuits are weakly coupled.

\(k \ll 1 \)

\[D_{en} \approx (1 + jw\tau_G)(1 + jw\tau_R) \]

If \(w \) is small, then \(D_{en} \approx 1 \)
b.

\[
\dot{V}_{NE} = \frac{R_{NE}}{R_{NE} + R_{FE}} j\omega L_m L\dot{I}_{GDC} + \frac{R_{NE} R_{FE}}{R_{NE} + R_{FE}} j\omega C_m L\dot{V}_{GDC}
\]

\[
\dot{V}_{FE} = -\frac{R_{FE}}{R_{NE} + R_{FE}} j\omega L_m L\dot{I}_{GDC} + \frac{R_{NE} R_{FE}}{R_{NE} + R_{FE}} j\omega C_m L\dot{V}_{GDC}
\]

\[
\frac{j\omega L_m L\dot{I}_{GDC}}{R_{NE}} + \frac{j\omega C_m L\dot{V}_{GDC}}{R_{FE}} = V_{NE} - V_{FE}
\]

(1)

\[
j\omega L_m L\dot{I}_{GDC} = \mathcal{Z} \left[\frac{d}{dt} (L_m L) \cdot \dot{I}_{GDC} \right] = \text{emf}
\]

\[
j\omega C_m L\dot{V}_{GDC} = \mathcal{Z} \left[\frac{d}{dt} (C_m L) \cdot \dot{V}_{GDC} \right] = \mathcal{Z} \left[\frac{d}{dt} (CV) \right]
\]

which is the independent current source due to the voltage of generator.
(3) Crosstalk is the superposition of two components; One is inductive coupling, the other one is capacitive coupling.

c. Intuitively :
(1) When low-impedance load (high current, low voltage), the inductive coupling is dominant.
(2) When high-impedance load (low current, high voltage), the capacitive coupling is dominant.