微波系統導論實驗二

網路分析儀雙埠校準與微波放大器量測

2-1 網路分析儀雙埠校準

實驗原理:

在實驗一使用網路分析儀進行單埠校準後,可量測天線的輸入阻抗特性。當待測物為雙埠元 件時如圖 1(a)所示,則須對網路分析儀進行雙埠校準。以 S 參數表示雙埠待測物之特性,則矩陣 參數表示為

圖1、(a) 網路分析儀雙埠量測以及(b) S參數示意圖。

圖1(b)為待測之雙埠網路S參數示意圖,S₁₁代表埠1的反射係數(reflection coefficient),S₂₂代表埠2 的反射係數,由反射係數可以求得待測元件的輸入阻抗Zin、反射損耗(return loss,RL)、電壓駐波 比(VSWR)等參數;S₂₁代表正向穿透係數(transmission coefficient),S₁₂代表反向穿透係數,由穿透 係數則可以求得待測元件之衰減常數α、穿透損耗(insertion loss, IL)等參數。各S參數之定義與其 代表意義列於表一中。圖1(b)為理想之雙埠元件S參數,實際上,網路分析儀由射頻訊號源發射 之微波訊號,經過網路分析儀之內部電路,到達待測元件時,已受到內部電路之反射、不匹配和 元件頻率響應等影響,而這些因素將造成量測上的誤差。

S-參數	定義	量測值
S ₁₁	b ₁ /a ₁ , a ₂ =0	埠1反射系數
S ₂₁	b ₂ /a ₁ , a ₂ =0	埠1至埠2穿透係數
S ₁₂	b ₁ /a ₂ , a ₁ =0	埠2至埠1穿透係數
S ₂₂	b ₂ /a ₂ , a ₁ =0	埠2反射係數

表一、S參數之定義與其代表意義。

量測系統誤差網路共以12項誤差係數表示,其中對應於S₂₁ 穿透係數之6項誤差係數,如圖2(a) 所示,其量測值分別為S_{21m} = b₃/ a_0 及S_{12m} = b₀/ a_3 ,而待測元件S_A之穿透係數為S₂₁ = b₂/ a_1 以及S₁₂ = b₁/ a_2 ,圖2(b)為其信號流程圖,故在開始使用網路分析儀前,必須先進行校準(calibration)。 圖3.3(b)中待測之6項誤差係數 e_{01} 、 e_{12} 、 e_{22} 、 e_{32} 及 e_{30} ,則可經由下述之校準程序得到。

- (a) 按實驗一之反射係數校準,量測開路(open)、短路(short)及50 歐姆(50Ω load)三個標準 元件,可得*e*₀₀、*e*₁₁及*e*₁₀*e*₀₁項。
- (b) 將埠1及埠2均與50歐姆相接,則可得e30項。
- (c) 將埠1及埠2直接相接(Thru),則可由穿透量測得 $e_{10}e_{32}$,而於反射量測得 e_{22} 。

按上述(a)-(c)校準程序,可由6次量測,得到6個非線性方程式,求解6個誤差係數,由此待測物 之反射係數S₁₁及穿透係數S₂₁,則可由量測值S_{11m}及S_{21m}求得。S₁₂及S₂₂之校準與上述相同, 須加做埠2之反射係數校準,即可將12項誤差係數求出,可推得待測物之雙埠S參數。

圖2、雙埠S參數量測(a)包含誤差網路之示意圖及(b)信號流程圖。

實驗器材:

- 1. Agilent N5230A、E5071C 網路分析儀
- 2. Agilent 85052D 50 Ω 3.5mm 校準器 (calibration kit)

實驗目的:

使同學能熟悉網路分析儀的基本操作,並量測微波放大器之雙埠S參數。

實驗步驟:

- 1. 設定網路分析儀之校準頻率範圍。
- 2. 設定頻率範圍內之取點數。
- 3. 確認網路分析儀的輸入功率低於-20 dBm
- 4. 使用校準精靈,選擇雙埠校準,校準器為 85052D。
- 5. 分別量測開路、短路、50Ω以及埠1與埠2對接。
- 6. 校準後,檢查埠1對接埠2特性是否正確。
- 7. 觀察 Smith Chart 之阻抗位置是否合理。

★ 網路分析儀為精密昂貴之實驗儀器,使用時須注意下列事項:

1. 不要自行加直流信號於待測電路上,以免網路分析儀 燒燬。

2. 將待測物與網路分析儀上的傳輸線連接時,若接頭無法順利旋入,不可用豐力將其旋入,應 立即將其退出,重新旋入,以避免接頭上的螺紋磨損。

3. 網路分析儀上的兩條傳輸線**不得任意扭轉,否則會折斷**。左右扭轉的曲率半徑則須大於 10cm。

使用校準器校準時,用畢請隨時將其放回校準盒內,以避免遺失或污損。

- 5. 若因事要暫時離開不用時,請先將螢幕的亮度減低,以延長螢幕的使用壽命。
- 6. 網路分析儀使用完畢時,請將校準器與傳輸線接頭蓋上保護蓋。

網路分析儀以及校準器皆為極精密昂貴之器材,請同學務必遵守上述規定。

2-2 微波放大器之小訊號特性量測

實驗原理:

圖 3 所示為一為無線收發端示意圖,將欲傳送之訊號饋入天線發射前,通常會經過一微波功 率放大器(power amplifier, PA),其目的主要為增加訊號的功率,藉此可增加訊號傳送的距離,而 在接收天線收到訊號時,會經過低雜訊放大器(low noise amplifier, LNA),主要目的是將接收到的 訊號放大並維持足夠的 S/N,進而傳送至下一級電路處理。PA 及 LNA 都屬於微波放大器,其基 本特性是提供輸入訊號的增益並且符合輸入及輸出阻抗之匹配。微波放大器之雙埠 S 參數可透過 網路分析儀測量得到,此特性為放大器之小訊號的特性。圖 4 (a)為微波放大器之定射損失 return loss 為 - RL。通常希望輸入訊號之能量有 90%以上有效饋入至微波放大器提升功率並且傳送至 輸出負載,故定義-RL<-10 dB 為有效頻寬,如圖中綠色範圍所示。

圖3、微波傳播之收發端示意圖。

圖4、(a)微波放大器示意圖及(b)S參數特性。

圖5、Mini-Circuit (a)微波放大器及(b)電容(DC block)。

此實驗提供兩個微波放大器進行量測,其一如圖5所示,本實驗需注意下列兩點:

- (一)請先確認放大器的 V∞值為多少,並且依照實驗表格限制電源供應器之輸出電流
- (二)請確認放大器之輸入及輸出方向,在使用網路分析儀量測時,輸入及輸出均確認串接 DC block 電容,阻擋 DC 電流流回 VNA 以保護 VNA。

實驗器材:

- 1. Agilent N5230A、E5071C 網路分析儀
- 2. Agilent 85052D 50Ω 3.5mm 校準器 (calibration kit)
- 3. MiniCircuit ZX60-6013E+
- 4. MiniCircuit ZX60-5916M+
- 5. DC block $\times 2$ (BLK-89+)
- 6. 電源供應器

實驗目的:

測量微波放大器之雙埠S參數特性(小訊號參數)。

實驗步驟:

- 1. 確認網路分析儀的輸出功率低於-20 dBm,以確保放大器量測特性為小訊號線性結果。
- 2. 對網路分析儀進行雙埠校準。
- 3. 量測 DC block 的特性,並且記錄可操作頻寬。
- 4. 確認待測之微波放大器之 VDC 偏壓, 及設定電源供應器之限流輸出。
- 5. 確認微波放大器之輸入及輸出端點,並且接上DC block。
- 6. 先請助教檢查電路連接是否正常,確認已接好 DC block,檢查過後才能開啟電源。
- 7. 開啟電源供應器,確認微波放大器直流特性。
- 8. 測量微波放大器之特性,記錄 5GHz 之 S 參數及放大器操作頻寬。

2-3 微波放大器之大訊號特性量測

實驗原理:

根據 2-2 節之實驗可量測微波放大器之小訊號特性,此時放大器的特性可視為線性操作,即輸入 功率與輸出功率維持固定倍數。如圖 6 所示,當輸入功率逐漸提高,而輸出功率因為電晶體之非線性 效應而趨於飽和,為了描述放大器的線性操作區域,故訂定了一項特徵,稱為 1 dB 壓縮點。當放大器 操作在 1 dB 壓縮點的時候,其增益為小訊號增益扣掉 1 dB,此時的輸入功率為 IP1dB(input 1 dB compressed point),而輸出功率為 OP1dB(output 1 dB compressed point)。而當輸入訊號之功率持續 上升時,而輸出功率已經飽和至一定值,此為放大器提供之最大輸出功率,我們稱之為輸出飽和功率 (Psat, saturation power)。量測 1 dB 壓縮點的方式,可藉由饋入不同的訊號功率,同時記錄相對應之 輸出功率,即可畫出如圖 6 之曲線,並透過量測推導其 1 dB 增益壓縮點。請注意輸出功率與輸入功率 之對應關係和放大器之操作頻率相關,因此需明確指出量測所得之功率曲線是在何種頻率下所得結 果。

圖6、微波放大器之輸入功率對輸出功率定義圖。

實驗器材:

- 1. 微波射頻源 (HP 8350A Sweep Oscillator)
- 2. 功率計 (Agilent 4418B)
- 3. 功率感測器 (Agilent E4412A) 或頻譜分析儀 (Signal Hound SA-124B+PC)
- 4. 轉接頭 (N-SMA)
- 5. 同軸纜線 (SMA cable)
- 6. MiniCircuit ZX60-6013E+
- 7. MiniCircuit ZX60-5916M+
- 8. DC block ×2 (BLK-89+)

實驗目的:

測量微波放大器之輸出功率對輸入功率特性(大訊號參數)。

實驗步驟:

1. 參照附錄二操作程序,對功率計進行校準,或使用頻譜分析儀量測功率,並記錄同軸纜線及轉接頭 的總損耗。

- 2. 調整微波射頻源之輸出頻率為 5 GHz、功率為 5 dBm。
- 3. 將輸入端與輸出端之轉接器對接以量測放大器之輸入功率 Pin,並將該值記錄於實驗記錄表中。
- 4. 請確實將放大器輸入連接至微波射頻源輸出端,功率感測器連接至放大器輸出端。
- 5. 記錄此時的接收功率 Pout 於表中,並計算放大器之增益。
- 6. 請確認此增益是否符合網路分析儀所量測之 S21 值。
- 7. 將 Pin 逐漸調大,觀察增益 1dB 壓縮點,並記錄於實驗記錄表中。
- 8. 將兩顆微波放大器串接,並且重複步驟2至步驟7。

實驗二 微波放大器實驗報告

- 1. 請解釋根據校準之"S","O", "L", "T" 所表達之意義。
- 2. 請繪出 DC block 之 S 參數,並且指出其可使用範圍(以 RL>20 dB 為準)。
- 請繪出 5916M+及 6013E+之 S 參數,並且指出其可使用範圍(以 RL > 10 dB 為準)。
- 4. 請問 5916M+ 及 6013E+在 5 GHz 之輸入阻抗及輸出阻抗。
- 5. 請問 SMA cable 在 5 GHz 的損耗。(單位 dB/m)
- 6. 根據實驗記錄表請繪出兩顆放大器 Pout vs Pin 以及 Gain vs Pin, 並找出輸出 P1dB 值。
- 7. 根據實驗記錄表請繪出兩種串接方式的 Pout vs Pin 以及 Gain vs Pin,並找出 對應的輸出 P1dB 值。思考可否由單獨一級放大器各自的 P1dB 預測串接後的 P1dB?
- 8. 計算兩顆放大器在 P1dB 時的 PAE。
- 9. 附上實驗記錄表。

實驗二 實驗記錄表

組別:

- 1. 網路分析儀雙埠校準(選取頻率範圍、點數,進行 SOLT 校準)
- 2. 量測 DC block 的特性, 並記錄在 5 GHz 之損耗

DC block: $S_{21} = dB$ $S_{11} = dB$

*請存檔 csv 格式(S-parameter (dB) vs. frequency)

3. 微波放大器小訊號參數量測,記錄頻率為5GHz之S參數

【請確認輸入及輸出均接上 DC I	C block)	ock)
-------------------	----------	------

Amplifier code	VD	I _D	S ₂₁	S ₁₁	S ₂₂	S ₁₂
5916M(+)	5					
6013E+	12					

*請存檔 csv 格式(S-parameter (dB) vs. frequency)

 微波放大器大訊號參數量測(找尋 P1dB、Psat) (請確認輸入及輸出均接上 DC block)

步驟1: 校準功率計並記錄同軸纜線及轉接頭之損耗。

- 步驟 2:將微波射頻源之輸入訊號調整至 5GHz 功率為 5dBm,饋入 5916M(+) 及 6013E+放大器,並且確認增益與小訊號增益一致。
- 步驟3:將微波射頻源之功率由5dBm每隔1dBm增加至15dBm,記錄5916M(+) 及 6013E+微波放大器的 Pout 對 Pin 之關係。
- 步驟 4:將 5916M(+)串接 6013E+後測量兩級放大器之 Pout 對 Pin 之關係。
- 步驟 5:將 6013E+串接 5916M(+)後測量兩級放大器之 Pout 對 Pin 之關係。

微波放大器型號: 5916M

微波射頻源	放大器輸入功率	功率計測得之功率	放大器增益
設定輸出功率	(dBm)	(dBm)	(dB)
(dBm)			

微波放大器型號:6013E

.

微波射频源	放大器輸入功率	功率計測得之功率	放大器增益
設定輸出功率	(dBm)	(dBm)	(dB)
(dBm)			

微波放大器 5916M 串接 6013E

微波射頻源	放大器輸入功率	功率計測得之功率	放大器增益
設定輸出功率	(dBm)	(dBm)	(dB)
(dBm)			

微波放大器型號 6013E 串接 5916M

微波射频源	放大器輸入功率	功率計測得之功率	放大器增益	
設定輸出功率	(dBm)	(dBm)	(dB)	
(dBm)				
TA's signature:				

Date<u>:</u>