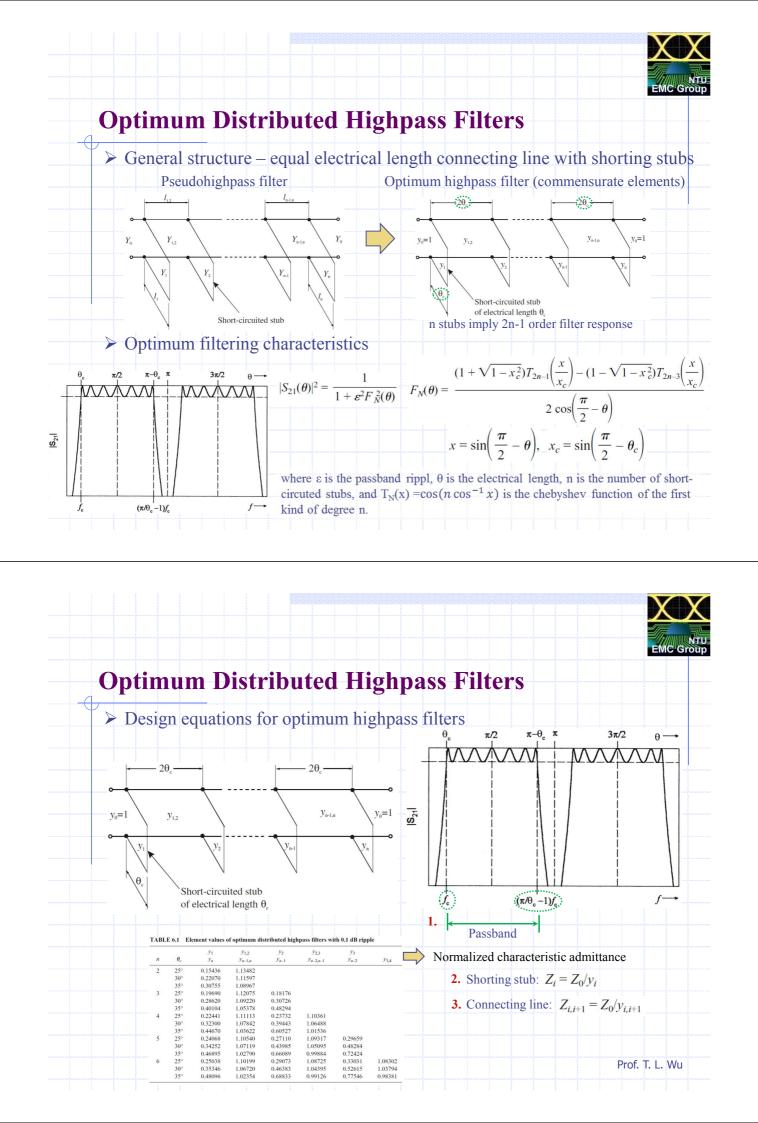
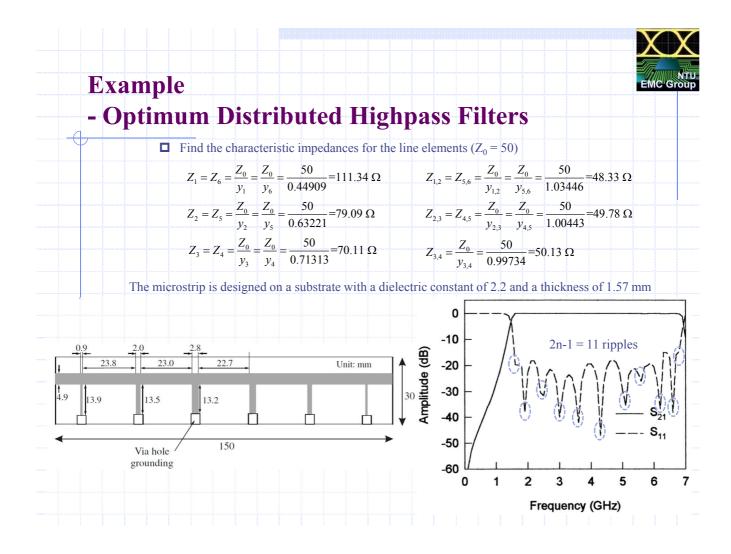

Chp6. Highpass Filters


Prof. Tzong-Lin Wu

Department of Electrical Engineering National Taiwan University



Prof. T. L. Wu

	Ex	ampl	e								EMC Gro
	- 0	ptim	um E	Distri	buted	l Hig	hpas	s I	Filters		
-(∕≻ I	Design a	an optin	num di	stribute	d HPF a	at cuto	ff fr	equency of 1.5	GHz and	10.1
									. The source/lo		
					10 0.5 0	JIIZ USI	ing 0 si	uus	. The source/io		lance
	0	of the fil	lter is 5	0Ω.							
		♦ Ster	1 - Find	l out the	required e	electrical	length θ	-			
		• Stop		i out me	lequirea e	leetheur	rengen o	C			
				$(\pi$	1) ((-	0 22	750			
				$\overline{\theta}$ -	$-1 f_c = 6.$	» Ц/	$\theta_c = 33$./5			
				\ ° <i>C</i>							
		♦ Ster	o 2 – look	up table	to find th	e require	ed charac	teris	tic impedances of	the elemen	t values
ABI	F61 F							teris	tic impedances of	the elemen	t values
ABL	LE 6.1 El	ement values o	of optimum dis	stributed high	ipass filters wit	th 0.1 dB ripp		teris			
		lement values o	of optimum dis y _{1,2}	stributed high	y _{2,3}	th 0.1 dB ripp y ₃	le	teris:	tic impedances of Intepolation method		
n	$ heta_c$	ement values of y_1 y_n	of optimum dis y _{1,2} y _{n-1,n}	stributed high	ipass filters wit	th 0.1 dB ripp			Intepolation metho	d to find $\theta_c =$	33.75°
	θ_c 25°	$\frac{y_1}{y_n}$ 0.15436	of optimum dis $y_{1,2}$ $y_{n-1,n}$ 1.13482	stributed high	y _{2,3}	th 0.1 dB ripp y ₃	le		Intepolation metho	d to find $\theta_c =$	33.75°
n	θ_c 25° 30°	lement values of y_1 y_n 0.15436 0.22070	of optimum dis $y_{1,2}$ $y_{n-1,n}$ 1.13482 1.11597	stributed high	y _{2,3}	th 0.1 dB ripp y ₃	le		Intepolation method $y_1 = 0.35346 + \frac{(0.4)}{2}$	d to find $\theta_c =$	33.75°
n	θ_c 25°	$\frac{y_1}{y_n}$ 0.15436	of optimum dis $y_{1,2}$ $y_{n-1,n}$ 1.13482	stributed high	y _{2,3}	th 0.1 dB ripp y ₃	le		Intepolation method $y_1 = 0.35346 + \frac{(0.4)}{2}$ = 0.44909	d to find $\theta_c =$	33.75°
n 2	<i>θ</i> _c 25° 30° 35°	lement values of y_1 y_n 0.15436 0.22070 0.30755	of optimum dis $y_{1,2}$ $y_{n-1,n}$ 1.13482 1.11597 1.08967	stributed high y ₂ y _{n-1}	y _{2,3}	th 0.1 dB ripp y ₃	le		Intepolation method $y_1 = 0.35346 + \frac{(0.4)}{2}$ = 0.44909	d to find $\theta_c =$	33.75°
n 2	<i>θ</i> _c 25° 30° 35° 25°	lement values of y ₁ y _n 0.15436 0.22070 0.30755 0.19690	of optimum dis $y_{1,2}$ $y_{n-1,n}$ 1.13482 1.11597 1.08967 1.12075	$\frac{y_2}{y_{n-1}}$ 0.18176	y _{2,3}	th 0.1 dB ripp y ₃	le		Intepolation method $y_1 = 0.35346 + \frac{(0.4)}{2}$ = 0.44909 $y_{1,2} = 1.03446$	d to find $\theta_c =$	33.75°
n 2	$\frac{\theta_c}{25^\circ}$ $\frac{30^\circ}{35^\circ}$ $\frac{25^\circ}{30^\circ}$	lement values o y ₁ y _n 0.15436 0.22070 0.30755 0.19690 0.28620	of optimum die y _{1,2} y _{n-1,n} 1.13482 1.11597 1.08967 1.12075 1.09220	$\frac{y_2}{y_{n-1}}$ 0.18176 0.30726	y _{2,3}	th 0.1 dB ripp y ₃	le		Intepolation method $y_1 = 0.35346 + \frac{(0.4)}{2}$ = 0.44909	d to find $\theta_c =$	33.75°
n 2	θ_c 25° 30° 35° 25° 30° 35°	ement values o y ₁ y _n 0.15436 0.22070 0.30755 0.19690 0.28620 0.40104	y _{1,2} y _{n-1,n} 1.13482 1.11597 1.08967 1.12075 1.09220 1.05378	0.18176 0.30726 0.48294	y _{2,3} y _{n-2,n-1}	th 0.1 dB ripp y ₃	le		Intepolation method $y_1 = 0.35346 + \frac{(0.4)}{2}$ = 0.44909 $y_{1,2} = 1.03446$ $y_2 = 0.63221$	d to find $\theta_c =$	33.75°
n 2 3 4	θ_c 25° 30° 35° 25° 30° 35° 25° 30° 35° 25° 30° 35°	lement values of y ₁ y _n 0.15436 0.22070 0.30755 0.19690 0.28620 0.40104 0.22441 0.32300 0.44670		y2 y2 yn-1 0.18176 0.30726 0.30726 0.48294 0.23732 0.39443 0.60527	$y_{2,3}$ $y_{n-2,n-1}$ 1.10361 1.06488 1.01536 1.01536	th 0.1 dB ripp y ₃ y _{n-2}	le		Intepolation method $y_1 = 0.35346 + \frac{(0.4)}{2}$ = 0.44909 $y_{1,2} = 1.03446$ $y_2 = 0.63221$ $y_{2,3} = 1.00443$	d to find $\theta_c =$	33.75°
n 2	θ_c 25° 30° 35° 25° 30° 35° 25° 30° 35° 25° 30° 35° 25°	lement values of y ₁ y _n 0.15436 0.22070 0.30755 0.19690 0.28620 0.40104 0.22441 0.32300 0.44670 0.24068	$\begin{array}{c} y_{1,2} \\ y_{n-1,n} \\ \hline \\ 1.13482 \\ 1.11597 \\ 1.08967 \\ 1.12075 \\ 1.09220 \\ 1.05378 \\ 1.11113 \\ 1.07842 \\ 1.03622 \\ 1.10540 \\ \end{array}$	5tributed high y ₂ y _{n-1} 0.18176 0.30726 0.48294 0.23732 0.39443 0.60527 0.27110	y2,3 y7,2,3 yn-2,n-1 1.10361 1.06488 1.01536 1.09317 1.09317	0.29659	le		Intepolation method $y_1 = 0.35346 + \frac{(0.4)}{2}$ = 0.44909 $y_{1,2} = 1.03446$ $y_2 = 0.63221$	d to find $\theta_c =$	33.75°
n 2 3 4	θ_c 25° 30° 35° 25° 30° 35° 25° 30° 35° 25° 30° 35° 25° 30° 35° 25° 30°	lement values of y ₁ y _n 0.15436 0.22070 0.30755 0.19690 0.28620 0.40104 0.22441 0.32300 0.44670 0.24068 0.34252	$\begin{array}{c} y_{1,2} \\ y_{n-1,n} \\ \hline \\ 1.13482 \\ 1.11597 \\ 1.08967 \\ 1.12075 \\ 1.09220 \\ 1.05378 \\ 1.11113 \\ 1.07842 \\ 1.03622 \\ 1.10540 \\ 1.07119 \end{array}$	5tributed high y ₂ y _{n-1} 0.18176 0.30726 0.48294 0.23732 0.39443 0.60527 0.27110 0.43985	y2,3 y7,3 yn-2,n-1 1.10361 1.06488 1.01536 1.050317 1.05095	0.29659 0.48284	le		Intepolation method $y_1 = 0.35346 + \frac{(0.4)}{2}$ = 0.44909 $y_{1,2} = 1.03446$ $y_2 = 0.63221$ $y_{2,3} = 1.00443$ $y_3 = 0.71313$	d to find $\theta_c =$	33.75°
n 2 3 4 5	θ_c 25° 30° 35° 25° 30° 35° 25° 30° 35° 25° 30° 35° 25° 30° 35° 25° 30° 35°	lement values of y ₁ y _n 0.15436 0.22070 0.30755 0.19690 0.28620 0.40104 0.22441 0.32300 0.44670 0.24068 0.34252 0.46895	$\begin{array}{c} y_{1,2} \\ y_{n-1,n} \\ \hline \\ y_{1,2} \\ y_{n-1,n} \\ \hline \\ 1.13482 \\ 1.11597 \\ 1.08967 \\ 1.12075 \\ 1.09220 \\ 1.05378 \\ 1.11113 \\ 1.07842 \\ 1.03622 \\ 1.10540 \\ 1.07119 \\ 1.02790 \\ \end{array}$	stributed high y ₂ y _{n-1} 0.18176 0.30726 0.48294 0.23732 0.39443 0.60527 0.27110 0.43985 0.66089	y2,3 y7,3 yn-2,n-1 1.10361 1.06488 1.01536 1.09317 1.05095 0.99884 1.09384	0.29659 0.48284 0.72424	le		Intepolation method $y_1 = 0.35346 + \frac{(0.4)}{2}$ = 0.44909 $y_{1,2} = 1.03446$ $y_2 = 0.63221$ $y_{2,3} = 1.00443$	d to find $\theta_c =$	33.75°
n 2 3 4	θ_c 25° 30° 35° 25° 30° 35° 25° 30° 35° 25° 30° 35° 25° 30° 35° 25° 30°	lement values of y ₁ y _n 0.15436 0.22070 0.30755 0.19690 0.28620 0.40104 0.22441 0.32300 0.44670 0.24068 0.34252	$\begin{array}{c} y_{1,2} \\ y_{n-1,n} \\ \hline \\ 1.13482 \\ 1.11597 \\ 1.08967 \\ 1.12075 \\ 1.09220 \\ 1.05378 \\ 1.11113 \\ 1.07842 \\ 1.03622 \\ 1.10540 \\ 1.07119 \end{array}$	5tributed high y ₂ y _{n-1} 0.18176 0.30726 0.48294 0.23732 0.39443 0.60527 0.27110 0.43985	y2,3 y7,3 yn-2,n-1 1.10361 1.06488 1.01536 1.050317 1.05095	0.29659 0.48284	le		Intepolation method $y_1 = 0.35346 + \frac{(0.4)}{2}$ = 0.44909 $y_{1,2} = 1.03446$ $y_2 = 0.63221$ $y_{2,3} = 1.00443$ $y_3 = 0.71313$	d to find θ _c = 48096 – 0.353 5	33.75°

110	ase design a HPF based on Butterworth prototype with the following specifications using
inte	erdigital capacitors and short-circuited stubs:
1.	Cutoff frequency : 3 GHz
2.	Insertion loss $> 25 \text{ dB}$ at 1 GHz
a. b. c. d.	 Please determine the order of the HPF. Find out the required series capacitances and shunt inductance. Plot the return loss and insertion loss for the designed HPF using ADS. Utilize 6, 8, and 10 fingers to realize this HPF and discuss the frequency response for the three structures in EM solver.
e.	Discuss the frequency responses from the circuit simulator (ADS) and EM solver.